Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objective of this study was to examine behavior and function of osteoblasts on saliva-contaminated titanium and its potential improvement after UV light treatment. Acid-etched titanium disks were contaminated with human saliva. Osteoblasts derived from rat femur were cultured on contaminated and clean titanium disks. Contaminated disks further treated with UV light were also tested. The number of attached cells, the degree of cell spreading, and the expression of adhesion protein were significantly decreased on saliva-contaminated surfaces compared with clean surfaces. The gene expression of osteocalcin was also downregulated on contaminated surfaces, whereas ALP activity and mineralization were not significantly influenced. The impaired functions on contaminated surfaces were significantly increased if the surfaces were further treated with UV and even outperformed the ones on clean titanium surfaces. XPS analysis revealed that the atomic percentage of carbon and nitrogen detected on contaminated surfaces were substantially decreased after UV treatment. These results suggest that osteoblastic behavior and function were compromised on titanium surfaces contaminated with saliva. The compromised functions no longer happened if the surfaces were further treated with UV light, providing the basis to understand the effect of biological contamination on osseointegration and to explore UV treatment as a decontaminating technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2019.03.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!