Background & Objectives: In our previous investigation, oral administration of 1,8- cineole-rich supercritical carbon dioxide extract of small cardamom seeds in Wistar albino rats resulted in achieving normal fasting blood glucose (FBG) and serum cholesterol levels. The objective of this study was to further protect the aforesaid extract and to enhance its in vivo therapeutic efficacies in redressing type 2 diabetes and hypercholesterolemia, by encapsulating it as nanoliposomes. Patents related to nanoliposomes have been revised thoroughly.
Methods: PEGylated nanoliposomes of the aforesaid extract were formulated using soya phosphatidylcholine and Tween 80 by probe-sonication. These nanoliposomes were subjected to in vitro characterizations and were orally administered to Wistar albino rats at three different doses viz. 550, 175 and 55 mg/kg b.w. for detailed investigation of their antidiabetic and hypocholesterolemic efficacies.
Results: FT-IR, DSC and XRD analyses, HLB value (16), entrapment efficiency (84%) and release kinetics (obeying Higuchi model) revealed that the nanoliposomes were o/w type and were hydrophilic. They exhibited appreciable in vitro antioxidant potency (59% DPPH scavenging activity) owing to a synergistic consortium of antioxidants present therein. Oral administration of the liposomes in rats at 550 mg/kg b.w. could restore their normal FBG levels and serum lipid profiles on day 35, with desirable up-down regulations of related key enzymes. The iHOMA2 model could successfully predict the effects of nanoliposomes on insulin sensitivity and glucose uptake in rat liver and brain, respectively.
Conclusion: Nanoliposome of 1,8-cineole rich extract of small cardamom seeds is a new biotherapeutic in redressing type 2 diabetes and hypercholesterolemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1872208313666190404101336 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!