Industrial chokeberry pomace is very rich in polyphenols. The main focus here lies on the possible relationship between the particle size of chokeberry milled pomace and an enhanced absorption and transport of polyphenols by Caco-2 cells. Wet milling was used to produce materials with particle size distributions in the micrometre and in the sub-micrometre to nanometre ranges starting from chokeberry pomace. Milled materials with about 50% of the particles with a mean size (x) of 223 ± 13 µm (coarse milling) and about 90% of the particles with x of 160 ± 40 nm (fine milling, sonication) were obtained. None of the milled materials exhibited cytotoxic effects within the tested concentration-ranges. The polyphenol absorption and the transport efficiencies from the fine and the coarse milled materials were similar. Thus, no effect of the particle size upon cellular uptake and transport could be established, but agglomeration of particle during incubation cannot be excluded as the cause. Furthermore, based on polyphenol stability we postulate that direct milling may be applied to valorise the processing by-product from commercial fruit juice production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09637486.2019.1595542 | DOI Listing |
Chem Commun (Camb)
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
We designed a SiO@C/MnO composite material with ultrafine particle size using a simple sol-gel method and calcination process. SiO and MnO components produce a mutual suppression effect during the charge/discharge process to mitigate volume expansion and maintain the long-term stability of composite.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Forschungszentrum Jülich, Institute of Energy Technologies - Fundamental Electrochemistry (IET-1), Jülich, Germany.
The study of degradation behavior of electrocatalysts in an industrial context calls for rapid and efficient analysis methods. Optical methods like Raman spectroscopy fulfil these requirements and are thus predestined for this purpose. However, the iridium utilized in proton exchange membrane electrolysis (PEMEL) is Raman inactive in its metallic state.
View Article and Find Full Text PDFRecent Pat Nanotechnol
January 2025
Raj Kumar Goel Institute of Technology (Pharmacy), 5-Km. Stone, Delhi-Meerut Road, Ghaziabad, Uttar Pradesh, India.
Background: Nanosuspension has emerged as an effective, lucrative, and unequalled approach for efficiently elevating the dissolution and bioavailability of aqueous soluble drugs. Diverse challenges persist within this domain, demanding further comprehensive investigation and exploration.
Objective: This study aims to design, develop, optimise formulation and process variables, and characterise the stabilised aqueous dissolvable nanosuspension using chlorthalidone as a BCS class- IV drug.
Environ Sci Pollut Res Int
January 2025
Research Centre for Energy, Environment and Technology (CIEMAT), Avda. Complutense, 40, 28040, Madrid, Spain.
As tailpipe emissions have decreased, there is a growing focus on the relative contribution of non-exhaust sources of vehicle emissions. Addressing these emissions is key to better evaluating and reducing vehicles' impact on air quality and public health. Tailoring solutions for different non-exhaust sources, including brake emissions, is essential for achieving sustainable mobility.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
The current chemotherapy treatments for liver cancer have shown limited effectiveness. Therefore, there is an urgent need to develop new drugs to combat this disease more effectively. This study reports synthesis of cobalt oxide nanoparticles coated with glucose, and conjugated with Ellagic acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!