Due to their extensive application in human and veterinary medicine, antibiotics have been found worldwide and studied as new pollutants in the aquatic environment. In order to remove such pollutants, adsorption and photocatalysis have attracted tremendous attention because of their great potential in antibiotics removal from aqueous solutions. Graphene, as a novel two-dimensional nanomaterial, possesses unique structure and physicochemical properties, which can be used to efficiently adsorb and photodegrade antibiotics. This review provides an overview of the adsorptive and catalytic properties of graphene, and recent advances in adsorption and photodegradation of antibiotics by graphene and its derivatives. The factors that affect the adsorption and photodegradation of antibiotics are reviewed and discussed. Furthermore, the underlying mechanisms of adsorption and photodegradation are summarized and analyzed. Meanwhile, statistical analysis is conducted based on the number of papers and the maximum adsorption and photodegradation ability on various antibiotics removal. Finally, some unsolved problems together with major challenges that exist in the fabrication and application of graphene-based nanocomposites and the development for antibiotics removal is also proposed. This work provides theoretical guidance for subsequent research in the field of adsorption and photocatalytic removal of antibiotics from aqueous solution, especially on influence factors and mechanisms aspects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.03.117 | DOI Listing |
Surg Infect (Larchmt)
January 2025
Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan.
Stent graft infection (SGI) caused by complex is rare. The usage of ascending-to-descending aortic bypass (ADAB) in such situations has not yet been fully discussed. Case report and literature review.
View Article and Find Full Text PDFJ Orthop Case Rep
January 2025
Department of Orthopedics, Apollo sage hospitals, Bhopal, Madhya Pradesh, India.
Introduction: Giant cell tumor of bone (GCTB) ranks among the most prevalent locally aggressive tumor lesions, displaying a diverse range of biological behaviors. Recurrence of GCTB is well-documented, often attributed to microscopic tumour remnants remaining after intralesional curettage, with increased concern when infection occurs postoperatively. Studies suggest the limited effectiveness of adjuvants in preventing giant cell tumour recurrence, emphasizing the necessity of complete removal of malignant cells.
View Article and Find Full Text PDFEnviron Res
January 2025
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
In recent years, the accumulation of waste plastics and emergence plastic-derived pollutants such as microplastics have driven significantly the development and updating of waste plastic utilization technology. This study prepared the porous carbon (PC-1-KOH) material directly from polyethylene terephthalate (PET) in waste plastic bottles using KOH activation and molten salt strategy for efficient removal of antibiotic tetracycline (TC). The maximum removal efficiency of TC was 100.
View Article and Find Full Text PDFInjury
January 2025
Institute for Biomechanics, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria; Department of Trauma Surgery, BG Unfallklinik Murnau, Professor-Küntscher-Str. 8, 82418 Murnau am Staffelsee, Germany.
Treatment algorithms for fracture nonunion depend on the presence or absence of bacterial infection. However, it is often impossible to identify infection preoperatively. While some infections may present with clinical signs of infection, low-grade infections lack infection signs and have a clinical presentation similar to aseptic nonunion.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:
Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!