Micrurus is a monophyletic genus of venomous coral snakes of the family Elapidae. The ~80 recognized species within this genus are endemic to the Americas, and are distributed from southeastern United States to northern Argentina. Although relatively few bites are recorded due to their reclusive nature, semi-fossorial habits, and their occurrence in sparsely populated areas, coral snakes possess powerful venoms that target the cholinergic system and, if early treatment is missed, can cause neuromuscular paralysis, respiratory failure, and death by asphyxiation within hours of envenoming. The to-date proteomically characterized 18 micrurine venoms exhibit a puzzling phenotypic dichotomy, characterized by the toxin arsenal being dominated either by pre-synaptically acting PLAs or post-synaptic 3FTxs, and a general, but imperfect, distributional pattern of these venom phenotypes along the North-South axis of the American continent. The lack of perfect phylogenetic clustering suggests that phylogeny may not be the sole factor driving the evolution of the divergent venom phenotypes across Micrurus venoms. To shed new light on the origin and expression pattern of the 3FTx/PLA venom dichotomy, we have conducted a comparative proteomics analysis of venoms from the Brazilian ribbon coral snake, Micrurus lemniscatus carvalhoi, sourced from different localities in the Brazilian states of São Paulo; the Caatinga coral snake, M. ibiboboca, from central Bahia state (Brazil); two Micrurus specimens of uncertain taxonomy collected in the Brazilian states of Alagoas and Rio de Janeiro; and the Western ribbon coral snake, M. l. helleri, from Leticia, the southernmost town of the Colombian Department of Amazonas. Venoms from São Paulo and Rio de Janeiro showed 3FTx-predominant phenotypes, while in venoms from Leticia, Alagoas and Bahia PLAs represented the major toxin family. Comparative venom proteomics suggests that both Micrurus venom phenotypes exhibit a high degree of toxin evolvability. Mapping the 3FTx/PLA dichotomy across the Americas points to a phylogeographic pattern for venom phenotypes consistent with, but more complex than, the North-South distribution hypothesis anticipated in previous investigations. BIOLOGICAL SIGNIFICANCE: New World coral snakes (Micrurus: Elapidae) produce potent venoms that target pre- and post-synaptically cholinergic nerve terminals resulting in neuromuscular paralysis, and in severe envenomings, may lead to death from asphyxiation by respiratory arrest. Presynaptic β-neurotoxins of group IA PLA protein subfamily and postsynaptic α-neurotoxins with 3FTx fold are the major components (>80%) of coral snake venoms. Micrurine venoms exhibit a puzzling phenotypic venom dichotomy, characterized by the dominant expression of either α- or β-neurotoxins. The distribution of these alternative compositional profiles has been fragmentarily studied both across Micrurus phylogeny and along the North-South axis of the genus radiation in the American continent, from southern United States to Northern Argentina. The unpredictability of the neurotoxin profile across the distribution range of the coral snakes represents a difficulty for applying the most appropriate treatment upon a coral snakebite. A deep knowledge of the phylogeographic distribution and the evolution of dichotomic Micrurus venoms would be useful for tracing the evolutionary path to their present day phenotypes, rationalizing the patchy cross-reactivity of current Micrurus antivenoms, and improving the efficacy of antivenoms to neutralize coral snake envenomings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2019.03.014 | DOI Listing |
J Venom Anim Toxins Incl Trop Dis
November 2024
Research Group in Toxinology, Pharmaceutical, and Food Alternatives, University of Antioquia, Medellín, Colombia.
is a coral snake of public health concern in Colombia. Its venom is mainly composed of three-finger toxins (3FTxs), Mipartoxin-1 being the most abundant protein partially responsible for its lethal effect. In this work, we present the production of Mipartoxin-1 in a recombinant form and evaluate its immunogenic potential.
View Article and Find Full Text PDFJ Am Coll Emerg Physicians Open
October 2024
Am J Emerg Med
November 2024
Department of Pathology, Molecular, and Cell-based medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!