A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design and synthesis a mitochondria-targeted dihydronicotinamide as radioprotector. | LitMetric

Design and synthesis a mitochondria-targeted dihydronicotinamide as radioprotector.

Free Radic Biol Med

Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China. Electronic address:

Published: May 2019

Radiation-induced damage to the mitochondrial macromolecules and electron transfer chain (ETC), causing the generation of primary and secondary reactive oxygen (ROS) species. The continuous ROS production after radiation will trigger cell oxidative stress and ROS-mediated nucleus apoptosis and autophagy signaling pathways. Scavenging radiation-induced ROS effectively can help mitochondria to maintain their physiological function and relief cells from oxidative stress. Nicotinamide is a critical endogenous antioxidant helping to neutralize ROS in vivo. In this study, we designed and synthetized a novel mitochondrial-targeted dihydronicotinamide (Mito-N) with the help of mitochondrial membrane potential to enter the mitochondria and scavenge ROS. According to experiment results, Mito-N significantly increased cell viability by 30.75% by neutralizing the accumulated ROS and resisting DNA strands breaks after irradiation. Furthermore, the mice survival rate also improved with the treatment of Mito-N, by effectively ameliorating the hematopoietic system infliction under lethal dose irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2019.03.038DOI Listing

Publication Analysis

Top Keywords

oxidative stress
8
ros
6
design synthesis
4
synthesis mitochondria-targeted
4
mitochondria-targeted dihydronicotinamide
4
dihydronicotinamide radioprotector
4
radioprotector radiation-induced
4
radiation-induced damage
4
damage mitochondrial
4
mitochondrial macromolecules
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!