A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Common spatial pattern and wavelet decomposition for motor imagery EEG- fTCD brain-computer interface. | LitMetric

Common spatial pattern and wavelet decomposition for motor imagery EEG- fTCD brain-computer interface.

J Neurosci Methods

Electrical and Computer Engineering, University of Pittsburgh, 3700 O'Hara St, Pittsburgh, PA, 15213, USA.

Published: May 2019

Background: Recently, hybrid brain-computer interfaces (BCIs) combining more than one modality have been investigated with the aim of boosting the performance of the existing single-modal BCIs in terms of accuracy and information transfer rate (ITR). Previously, we introduced a novel hybrid BCI in which EEG and fTCD modalities are used simultaneously to measure electrical brain activity and cerebral blood velocity during motor imagery (MI) tasks.

New Method: In this paper, we used multi-scale analysis and common spatial pattern algorithm to extract EEG and fTCD features. Moreover, we proposed probabilistic fusion of EEG and fTCD evidences instead of concatenating EEG and fTCD feature vectors corresponding to each trial. A Bayesian approach was proposed to fuse EEG and fTCD evidences under 3 different assumptions.

Results: Experimental results showed that 93.85%, 93.71%, and 100% average accuracies and 19.89, 26.55, and 40.83 bits/min average ITRs were achieved for right MI vs baseline, left MI versus baseline, and right MI versus left MI respectively.

Comparison With Existing Methods: These performance measures outperformed the results we obtained before in our preliminary study in which average accuracies of 88.33%, 89.48%, and 82.38% and average ITRs of 4.17, 5.45, and 10.57 bits/min were achieved for right MI versus baseline, left MI versus baseline, and right MI versus left MI respectively. Moreover, in terms of both accuracy and speed, the EEG- fTCD BCI with the proposed analysis techniques outperformed all EEG- fNIRS studies in comparison.

Conclusions: The proposed system is a more accurate and faster alternative to EEG-fNIRS systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2019.03.018DOI Listing

Publication Analysis

Top Keywords

eeg ftcd
20
versus baseline
12
common spatial
8
spatial pattern
8
motor imagery
8
eeg- ftcd
8
terms accuracy
8
ftcd evidences
8
average accuracies
8
average itrs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!