Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Air-sea exchange of mercury (Hg) is the largest flux between Earth system reservoirs. Global models simulate air-sea exchange based either on an atmospheric or ocean model simulation and treat the other media as a boundary condition. Here we develop a new modeling capability (NJUCPL) that couples GEOS-Chem (atmospheric model) and MITgcm (ocean model) at the native hourly model time step. The coupled model is evaluated against high-frequency simultaneous measurements of elemental mercury (Hg) in both the atmosphere and surface ocean obtained during five published cruises in the Atlantic, Pacific, and Southern Oceans. Results indicate that the calculated global Hg net evasion flux is 12% higher for the online model than the offline model. We find that the coupled online model captures the spatial pattern of the observations; specifically, it improves the representation of peak seawater Hg (Hg) concentration associated with enhanced precipitation in the intertropical convergence zone in both the Atlantic and the Pacific Oceans. We investigate the causes of the observed Hg peaks with two sensitivity simulations and show that the high Hg concentrations are associated with elevated convective cloud mass flux and bromine concentrations in the tropical upper troposphere. Observations of elevated Hg concentrations in the western tropical Pacific Ocean merit further study involving BrO vertical distribution and cloud resolving models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b06205 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!