Self-assembled peptide nanofibrous scaffolds with designer sequences, similar to neurite growth promoting molecules enhance the differentiation of neural stem cells. However, self-assembled peptide nanofibrous scaffolds lack the required mechanical strength to suffice to bridge long critical-sized peripheral nerve defects. Hence, there is a demand for a potential neural substrate, which could be biomimetic coupled with bioactive nanostructures to regrow the denuded axons towards the distal end. In the present study, we developed designer self-assembling peptide-based aligned poly(lactic-co-glycolic acid) (PLGA) nanofibrous scaffolds by simple surface coating of peptides or coelectrospinning. Retention of secondary structures of peptides in peptide-coated and cospun fibers was confirmed by circular dichroism spectroscopy. The rod-like peptide nanostructures enhance the typical bipolar morphology of Schwann cells. Although the peptide-coated PLGA scaffolds exhibited significant increase in Schwann cell proliferation than pristine PLGA and PLGA-peptide cospun scaffolds (p < .05), peptide cospun scaffolds demonstrated better cellular infiltration and significantly higher gene expression of neural cell adhesion molecule, glial fibrillary acidic protein, and peripheral myelin protein22 compared to the pristine PLGA and PLGA-peptide-coated scaffolds. Our results demonstrate the positive effects of aligned peptide coelectrospun scaffolds with biomimetic cell recognition motifs towards functional proliferation of Schwann cells. These scaffolds could subsequently repair peripheral nerve defects by augmenting axonal regeneration and functional nerve recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/term.2860 | DOI Listing |
J Mater Chem B
January 2025
Biomaterials Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius.
Tissue regeneration after a wound occurs through three main overlapping and interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase. The macrophages in the non-healing wounds remain in the inflammatory loop, but their phenotypes can be changed interactions with nanofibre-based scaffolds mimicking the organisation of the native structural support of healthy tissues.
View Article and Find Full Text PDFGels
December 2024
Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 27201 Kladno, Czech Republic.
Cardiovascular disease is one of the leading causes of death and serious illness in Europe and worldwide. Conventional treatment-replacing the damaged blood vessel with an autologous graft-is not always affordable for the patient, so alternative approaches are being sought. One such approach is patient-specific tissue bioprinting, which allows for precise distribution of cells, material, and biochemical signals.
View Article and Find Full Text PDFDent J (Basel)
January 2025
Department of Conservative Dentistry with Endodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland.
Traditional root canal therapy (RCT) effectively removes diseased or necrotic pulp tissue and replaces it with inorganic materials. Regenerative endodontics is an alternative to conventional RCT by using biologically based approaches to restore the pulp-dentin complex. This review explores emerging techniques, including autogenic and allogenic pulp transplantation, platelet-rich fibrin, human amniotic membrane scaffolds, specialized pro-resolving mediators, nanofibrous and bioceramic scaffolds, injectable hydrogels, dentin matrix proteins, and cell-homing strategies.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China. Electronic address:
Acellular cellulose-based biomaterials hold promising potential for treating bladder injuries. However, the compromised cellular state surrounding the wound impedes the complete reconstruction of the bladder. This necessitates the development of a bio-instructive cellulose-based biomaterial that actively controls cell behavior to facilitate effective bladder regeneration.
View Article and Find Full Text PDFTissue Cell
January 2025
School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:
Numerous naturally occurring biological structures have inspired the development of innovative biomaterials for a wide range of applications. Notably, the nanotopographical architectures found in natural materials have been leveraged in biomaterial design to enhance cell adhesion and proliferation and improve tissue regeneration for biomedical applications. In this study, we fabricated three-dimensional (3D) chitin-glucan micro/nanofibrous fungal-based spheres coated with collagen (type I) to mimic the native extracellular matrix (ECM) microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!