Small
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
Published: May 2019
Synergistic integration of two active metal-based compounds can lead to much higher electrocatalytic activity than either of the two individually, due to the interfacial effects. Herein, a proof-of-concept strategy is creatively developed for the successful fabrication of twinned tungsten carbonitride (WCN) nanocrystals, where W C and WN are chemically bonded at the molecule level. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) spectroscopy analyses demonstrate that the intergrowth of W C and WN in the WCN nanocrystals produces abundant N-W-C interfaces, leading to a significant enhancement in catalytic activity and stability for hydrogen evolution reaction (HER). Indeed, it shows 14.2 times higher and 140 mV lower in the respective turn-over frequency (TOF) and overpotential at 10 mA cm compared to W C alone. To complement the experimental observation, the theoretical calculations demonstrate that the WCN endows more favorable hydrogen evolution reaction than the single W C or WN crystals due to abundant interfaces, beneficial electronic states, lower work function, and more active W sites at the N-W-C interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201900248 | DOI Listing |
Chem Commun (Camb)
January 2025
Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, China.
FeCoNiIrPtPd/NCNT exhibits 3.4- and 1.6-fold higher levels of mass activity than does commercial Pt/C in the hydrogen evolution reaction (HER) and ethanol oxidation reaction (EOR), respectively.
View Article and Find Full Text PDFACS Nano
January 2025
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Hydrogen evolution reaction and Zn dendrite growth, originating from high water activity and the adverse competition between the electrochemical kinetics and mass transfer, are the main constraints for the commercial applications of the aqueous zinc-based batteries. Herein, a weak H-bond interface with a suspension electrolyte is developed by adding TiO nanoparticles into the electrolytes. Owing to the strong polarity of Ti-O bonds in TiO, abundant hydroxyl functional groups are formed between the TiO active surface and aqueous environment, which can produce a weak H-bond interface by disrupting the initial H-bond networks between the water molecules, thereby accelerating the mass transfer of Zn and reducing the water activity.
View Article and Find Full Text PDFNat Commun
January 2025
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, PR China.
Defect engineering can create various vacancy configurations in catalysts by finely tuning the local electronic and geometric structures of the active sites. However, achieving precise control and identification of these defects remains a significant challenge, and the origin of vacancy configurations in catalysts, especially clustered or associated ones, remains largely unknown. Herein, we successfully achieve the controllable fabrication and quantitative identification of triple O-Ti-O vacancy associate (VVV) in nanosized Ni-doped TiO.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China.
Various sustainable energy conversion techniques like water electrolyzers, fuel cells, and metal-air battery devices are promising to alleviate the issues in fossil fuel consumption. However, their broad employment has been mainly inhibited by the lack of advanced electrocatalysts to accelerate the sluggish kinetics of the three involved half-reactions including oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). Recent advances have witnessed the cucurbit[]uril (CB[])-directed strategy as a prominent tool to develop high performance electrocatalysts with either OER, ORR, or HER activities.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China.
Copper-based catalysts demonstrate distinctive multicarbon product activity in the CO electroreduction reaction (CORR); however, their low selectivity presents significant challenges for practical applications. Herein, we have developed a multilevel porous spherical CuO structure, wherein the mesopores are enriched with catalytic active sites and effectively stabilize Cu, while the macropores facilitate the formation of a "gas-liquid-solid" three-phase interface, thereby creating a microenvironment with an increasing water concentration gradient from the interior to the exterior. Potential-driven phase engineering and protonation synergistically optimize the reaction pathway, facilitating a switch between CO and CH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.