Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Low-energy collision-induced dissociation (CID) of deprotonated l-cysteine S-sulfate, [cysS-SO], delivered in the gas phase by electrospray ionization, has been found to provide a means to form deprotonated l-cysteine sulfenic acid, which is a fleeting intermediate in biological media. The reaction mechanism underlying this process is the focus of the present contribution. At the same time, other novel species are formed, which were not observed in previous experiments. To understand fragmentation pathways of [cysS-SO], reactive chemical dynamics simulations coupled with a novel algorithm for automatic determination of intermediates and transition states were performed. This approach has allowed the identification of the mechanisms involved and explained the experimental fragmentation pathways. Chemical dynamics simulations have shown that a roaming-like mechanism can be at the origin of l-cysteine sulfenic acid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.9b01779 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!