High specificity detection and site-specific therapy are still the main challenges for theranostic anticancer prodrugs. In this work, we reported two smart activatable theranostic molecules based on a thermally activated delayed fluorescence fluorescein derivative. Nitroreductase induced by a mild hypoxia microenvironment of a solid tumor was used to activate the fluorescence and photodynamic therapy (PDT) efficiency by employing the intramolecular photoinduced electron transfer mechanism. A high PDT efficiency under 10% oxygen concentration was achieved, which is better than that of porphyrin (PpIX), a traditional photosensitizer. Such an excellent PDT efficiency can be attributed to lysosome disruption because the theranostic molecule can specifically enter the lysosomes of cells. Importantly, the strategy of targeting the mild hypoxic cells in the edge of tumor tissue could heal the "Achilles' heel" of traditional PDT. We believe that this theranostic molecule has a high potential to be applied in clinical investigation as a theranostic anticancer prodrug.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b04488 | DOI Listing |
Dalton Trans
January 2025
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
Photodynamic therapy (PDT), as a non-invasive cancer treatment, offers significant advantages including high temporal-spatial selectivity, minimal surgical intervention, and low toxicity, thereby garnering considerable research interest from across the world. In this study, we have developed a series of dinuclear cyclometalated Ir(III) complexes as potential two-photon photodynamic anticancer agents. These Ir(III) complexes demonstrate significant two-photon absorption (2PA) cross-sections ( = 66-166 GM) and specifically target mitochondria.
View Article and Find Full Text PDFJ Org Chem
January 2025
Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, P.R. China.
Thiophene and pyrrole units are extensively utilized in light-responsive materials and have significantly advanced the field of organic photovoltaics (OPV). This progress has inspired our exploration of photosensitizers (PS) for photodynamic therapy (PDT). Currently, traditional PS face limitations in clinical application, including a restricted variety and narrow applicability.
View Article and Find Full Text PDFBiomed Microdevices
January 2025
Institute of Industrial Science, The University of Tokyo, Meguro-Ku, 153-8505, Tokyo, Japan.
Recently, photodynamic therapy (PDT) which involves a photosensitizer (PS), a special drug activated by light, and light irradiation has been widely used in treating various skin diseases such as port-wine stain as well as cancers such as melanoma and non-melanoma skin cancers. PDT comprises two general steps: the introduction of PS into the body or a specific spot to be treated, and the irradiation process using a light source with a specific wavelength to excite the PS. Although PDT is gaining great attention owing to its potential as a targeted approach in the treatment of skin cancers, several limitations still exist for practical use.
View Article and Find Full Text PDFNanoscale
January 2025
Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
The mode of energy transfer between photosensitizers and oxygen determines the yield of singlet oxygen (O), crucial for photodynamic therapy (PDT). However, the aggregation of photosensitizers promotes electron transfer while inhibiting pure energy transfer, resulting in the generation of the hypotoxic superoxide anion (O) and consumption of substantial oxygen. Herein, we achieve the reduction of the aggregation of photosensitizers to inhibit electron transfer through classical chemical crosslinking, thereby boosting the production of O.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
Hepatocellular carcinoma (HCC) is typically diagnosed at intermediate to advanced stage, making surgical treatment unfeasible. Conversion therapy aims to reduce tumor stage, improve hepatic resection feasibility, and lower recurrence rates. Since traditional therapies are often accompanied by uncertainty of efficacy, there is an urgent need to explore new treatment strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!