The structure of bioactive compounds inside their biological target is mainly dictated by the intermolecular interactions present in the binding side, whereas intramolecular interactions are responsible for the structure of an isolated molecule. Accordingly, this work reports the relative significance of these interactions for the bioactive conformation of the N-protonated epinephrine. The crystallized structure of epinephrine has a gauche orientation of the O-C-C-N torsion angle. Conformational analysis in the gas phase and implicit water was performed to investigate the main intramolecular forces favoring this conformational preference, which was primarily attributed to the electrostatic interaction between hydroxyl and ammonium groups. However, when the conformers were docked into the active site, intramolecular interactions were surpassed by intermolecular hydrogen bonds with neighboring amino acid residues. Nonetheless, structural modifications aiming at strengthening intramolecular interactions could be used to modulate a bioactive conformation, thereby assisting in the structure-based design of new chemical entities.

Download full-text PDF

Source
http://dx.doi.org/10.1002/minf.201800167DOI Listing

Publication Analysis

Top Keywords

intramolecular interactions
16
bioactive conformation
12
interactions bioactive
8
interactions
6
role intramolecular
4
bioactive
4
conformation epinephrine
4
epinephrine structure
4
structure bioactive
4
bioactive compounds
4

Similar Publications

Where Does the Proton Go? Structure and Dynamics of Hydrogen-Bond Switching in Aminophosphine Chalcogenides.

Angew Chem Int Ed Engl

January 2025

University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.

Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.

View Article and Find Full Text PDF

Two π-radical complexes containing bisazo-aromatic-centered radical anion (1•-) were synthesized through in-situ electron transfer from metal-to-ligand using [IrI] and 2-(2-Pyridylazo)azobenzene (1) in inert hydrocarbon solvent. These are characterized as diradical [IrIII(1•-)2]+[2]+ and monoradical [IrIII(1•-)Cl2(PPh3)] 3. In contrast, a rare metal-mediated hydrolytic cleavage of the C(sp2)-N bond occurred in protic solvent resulting in quaternary radical complex [IrIII(1•-)(1')(PPh3)]+(4)+.

View Article and Find Full Text PDF

This work presents an investigation of the influence of poly(-isopropylacrylamide) (PNIPAM) polymer on the structural dynamics of intrinsically disordered alpha-synuclein (α-syn) protein, exploring the formation and intricate features of the resulting α-syn/PNIPAM complexes. Using atomistic molecular dynamics (MD) simulations, our study analyzes the impact of initial configuration, polymer molecular weight, and protein mutations on the α-syn and the α-syn/PNIPAM complex. Atomistic simulations, of a few μs, of the protein/polymer complex reveal crucial insights into molecular interactions within the complex, emphasizing a delicate balance of forces governing its stability and structural evolution.

View Article and Find Full Text PDF

Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials possess unique advantages of high-efficiency and narrowband emission, which have rapidly occupied an important position in the field of organic light-emitting diodes (OLEDs). In recent years, significant advancements have been made in the development of MR-TADF materials, particularly in achieving spectral narrowing for high-color-purity OLED applications. Based on diverse MR-TADF molecular skeletons, this review summarizes the primary molecular strategies to narrow spectrum by suppressing structural relaxation and intermolecular interactions.

View Article and Find Full Text PDF

A-D-A type fluorescent probe with dual quaternary-ammonium-salt anchors for turn on detection of HSA in wide emission gamut.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122 China. Electronic address:

Human serum albumin (HSA) is a key protein implicates in various physiological and pathological conditions such as renal injury, diabetes mellitus. Herein, we report an AIE-active fluorescent probe (DNI-4) for detection of HSA with a "turn on" response covering visible and near-infrared region (500 - 800 nm). Combining with a triphenylamine and two 1,8-naphthalimide moieties, the chromophore segment of DNI-4 forms a "A-D-A" type molecular architecture with the twisted intramolecular charge transfer property.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!