Using Mechanistic Models for Analysis of Proteomic Data.

Methods Mol Biol

Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.

Published: July 2019

A goal of systems biology is to develop an integrated picture of how the myriad components of a biological system work together to produce responses to environmental inputs. Achieving this goal requires (1) assembling a list of the component parts of a cellular regulatory system, and (2) understanding how the connections between these components enable information processing. To work toward these ends, a number of methods have matured in parallel. The compilation of a cellular parts list has been accelerated by the advent of omics technologies, which enable simultaneous characterization of a large collection of biomolecules. A particular type of omics technology that is useful for understanding protein-protein interaction networks is proteomics, which can give information about a number of dimensions of the state of the cell's proteins: quantification of protein abundances within the cell, characterization of the posttranslational modification state of the proteome through phosphopeptide enrichment, and identification of protein-protein interactions through co-immunoprecipitation. Mathematical models can be useful in analyzing proteomic data.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9102-0_12DOI Listing

Publication Analysis

Top Keywords

proteomic data
8
mechanistic models
4
models analysis
4
analysis proteomic
4
data goal
4
goal systems
4
systems biology
4
biology develop
4
develop integrated
4
integrated picture
4

Similar Publications

Advancing Thoracic Surgical Oncology in the Era of Precision Medicine.

Cancers (Basel)

January 2025

Department of Thoracic Surgery, University of Rome La Sapienza, Sant'Andrea Hospital, 00189 Rome, Italy.

The landscape of surgical oncology is rapidly evolving with the advent of precision medicine, driven by breakthroughs in genomics and proteomics. This article explores how integrating molecular data is transforming surgical decision-making and enabling personalized treatment strategies. We examine emerging technologies such as next-generation sequencing, proteomic analysis, and molecular imaging, which provide critical insights into tumor biology and guide surgical interventions.

View Article and Find Full Text PDF

Madin-Darby Canine Kidney (MDCK) cells are a key cell line for influenza vaccine production, due to their high viral yield and low mutation resistance. In our laboratory, we established a tertiary cell bank (called M60) using a standard MDCK cell line imported from American Type Culture Collection (ATCC) in the USA. Due to their controversial tumourigenicity, we domesticated non-tumourigenic MDCK cells (named CL23) for influenza vaccine production via monoclonal screening in the early stage of this study, and the screened CL23 cells were characterised based on their low proliferative capacity, which had certain limitations in terms of expanding their production during cell resuscitation.

View Article and Find Full Text PDF

Transcriptomics and Proteomics Analysis of the Liver of Knockout Mice.

Int J Mol Sci

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.

RAD52 plays crucial roles in several aspects of mammalian cells, including DNA double-strand breaks repair, viral infection, cancer development, and antibody class switching. To comprehensively elucidate the role of RAD52 in maintaining genome stability and uncover additional functions of RAD52 in mammals, we performed the transcriptomics and proteomics analysis of the liver of knockout mice. Transcriptomics analysis reveals overexpression of mitochondrial genes in the liver of knockout (RAD52KO) mice.

View Article and Find Full Text PDF

Background: Saliva is a protein-rich body fluid for noninvasive discovery of biomolecules, containing both human and microbial components, associated with various chronic diseases. Type-2 diabetes (T2D) imposes a significant health and socio-economic burden. Prior research on T2D salivary microbiome utilized methods such as metagenomics, metatranscriptomics, 16S rRNA sequencing, and low-throughput proteomics.

View Article and Find Full Text PDF

Objective: Neuroendocrine cervical carcinoma (NECC) is a rare but highly aggressive tumor. The clinical management of NECC follows neuroendocrine neoplasms and cervical cancer in general. However, the diagnosis and prognosis of NECC remain dismal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!