Linseed oil can decrease liver fat deposition and improve antioxidant ability of juvenile largemouth bass, Micropterus salmoides.

Fish Physiol Biochem

Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China.

Published: October 2019

A feeding trial was conducted to evaluate the effect of linseed oil (LO) on growth, plasma biochemistry, hepatic metabolism enzymes, and antioxidant capacity of juvenile largemouth bass, Micropterus salmoides. Four isonitrogenous (crude protein, 45%) and isoenergetic (gross energy, 18 MJ/kg) diets were formulated by replacing 0 (the control), 33.3%, 66.7%, and 100% of fish oil with linseed oil. Each diet was fed to three replicate groups of fish (initial body weight, 22.02 ± 0.61 g) for 8 weeks. The results indicated that fish fed diet with 100% LO substitution level had lower weight gain (WG), specific growth rate (SGR), and protein efficiency ratio (PER) than the other groups (P < 0.05), while feed conversion ratio (FCR) was higher compared to the other groups (P < 0.05). Feed intake (FI) and hepatosomatic index (HSI) of 66.7% LO substitution level were significantly lower than the control groups (P < 0.05). Glycogen, lipid, and non-esterified fatty acid content in the liver decreased significantly with increasing dietary LO levels (P < 0.05). Moreover, the replacement of fish oil (FO) with LO could significantly reduce the content of triglyceride (TG) and total cholesterol (TC) and the activity of alanine amiotransferase (ALT) in plasma of M. salmoides (P < 0.05). There were significant differences in hepatic metabolism enzymes in fish fed diets with different dietary LO levels. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR-α) activities in liver significantly increased with increasing dietary LO level (P < 0.05). In addition, phosphoenolpyruvate carboxykinase (PEPCK) and fructose-1,6-bisphosphatase (FBPase) activities in the liver significantly increased with decreasing dietary LO level (P < 0.05). Both the lowest superoxide dismutase (SOD) and catalase (CAT) activities in the liver were recorded in the control group (P < 0.05). Moreover, nitric oxide content, glutathione peroxidase (GPx), and inducible nitric oxide synthase (iNOS) activities in the liver significantly increased with increasing dietary LO level, while malondialdehyde (MDA) content significantly reduced. These findings demonstrated that LO can improve liver function and antioxidant ability of M. salmoides. In addition, replacing partial FO with LO cannot affect growth performance, but all substitutions inhibit growth performance of M. salmoides.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-019-00636-3DOI Listing

Publication Analysis

Top Keywords

linseed oil
12
juvenile largemouth
8
largemouth bass
8
bass micropterus
8
micropterus salmoides
8
oil decrease
4
decrease liver
4
liver fat
4
fat deposition
4
deposition improve
4

Similar Publications

Modulatory effect of Echium plantagineum oil on the n-3 LC-PUFA biosynthetic capacity of chicken (Gallus gallus).

Poult Sci

January 2025

Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna. Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain.

Poultry can be a sustainable source of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) through the bioconversion of dietary alpha-linolenic acid (ALA, 18:3n-3). However, this process is currently limited by the high n-6/n-3 ratio in poultry diets affecting the competition between n-6 and n-3 fatty acids (FA) for the same biosynthetic enzymes, and the rate-limiting Δ6 desaturase which act at both, the first and final steps of DHA synthesis pathway. Echium plantagineum oil (EO) is an unusual source of stearidonic acid (SDA, 18:4n-3) which bypasses the first Δ6 desaturase step potentially increasing n-3 long-chain polyunsaturated fatty acids (LC-PUFA) synthesis.

View Article and Find Full Text PDF

The study aimed to evaluate the effect of ultrasound maceration of cold-pressed oils with freeze-dried mullein flowers (Verbascum thapsus L.) on their oxidative stability and chemical composition. After the maceration process, oils' were subjected to their oxidative stability (80-120 °C) and their chemical composition, Moreover, oils kinetics parameters were calculated.

View Article and Find Full Text PDF

The effects of three dietary oils (rapeseed oil, camellia oil, linseed oil) with different fatty acid compositions on the growth performance, digestion and gut microbiota of rats after 8 weeks of feeding were studied. The serum metabolic index and liver histomorphology of rats were measured using an automatic biochemical analyzer and light microscope. Furthermore, 16S rDNA amplicon sequencing technology was used to analyze the gut microbiota.

View Article and Find Full Text PDF

The aim of this study was to compare the functional properties of linseed oil powders made of three types of wall material (OSA starch + maltodextrin, OSA starch + nutriose, and OSA starch + inulin) and two types of emulsion phases (micro- and nanoemulsion). For these independent variables, the properties of the prepared emulsions (flow curves and viscosity) and the resulting powders (encapsulation efficiency, particle size distribution, water activity, bulk and tapped density, Carr's index, color parameters, and thermal stability) were determined. The results showed that emulsion viscosity and most powder properties were affected by the emulsion type.

View Article and Find Full Text PDF

Rheological Properties of Emulsions Stabilized by Cellulose Derivatives with the Addition of Ethyl Alcohol.

Materials (Basel)

December 2024

Division of Chemical Engineering and Equipment, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland.

The paper presents the results of research on the rheological properties and stability of oil-in-water emulsions containing cellulose derivatives: methylcellulose, hydroxyethylcellulose, and hydroxypropylmethylcellulose. The continuous phase of the emulsion was a 70% ethanol (EtOH) solution by volume. The dispersed phase consisted of mineral, linseed, and canola oils (20% by volume).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!