Self-organization of gel networks formed by block copolymer stars.

Soft Matter

Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.

Published: April 2019

The equilibrium properties of block copolymer star networks (BCS) are studied via computer simulations. We employ both molecular dynamics and multiparticle collisional dynamics simulations to investigate the self-organization of BCS with f = 9 functionalized arms close to their overlap concentrations under conditions of different fractions of functionalization and varying attraction strength. We find three distinct macroscopic self-organized states depending on fraction of attractive end-monomers and the strength of the attraction. At weak attractions, ergodic, diffusive liquids result, with short-lived bonds between the stars. As the attraction strength grows, the whole system forms a percolating cluster, while at the same time the individual molecules are diffusive. Finally, arrested gels emerge when the attractions become strong. The conformation of the BCS in these solutions is found to be strongly affected by the concentration, with the stars assuming typically spherical, open configurations in seeking to maximize inter-star associations as opposed to the inter-star collapse that results at infinite dilution, giving rise to strongly aspherical shapes and reduced sizes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm00111eDOI Listing

Publication Analysis

Top Keywords

block copolymer
8
attraction strength
8
self-organization gel
4
gel networks
4
networks formed
4
formed block
4
copolymer stars
4
stars equilibrium
4
equilibrium properties
4
properties block
4

Similar Publications

In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release.

View Article and Find Full Text PDF

Unlocking hexafluoroisopropanol as a practical anion-binding catalyst for living cationic polymerization.

Angew Chem Int Ed Engl

January 2025

Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, Key Laboratory of Polymer Ecomaterials, 5625 Renmin Street, Changchun, , 130022, Changchun, CHINA.

Living cationic polymerization (LCP) is a classical technique for precision polymer synthesis; however, due to the high sensitivity of cationic active species towards chain-transfer/termination events, it is notoriously difficult to control polymerization under mild conditions, which inhibits its progress in advanced materials engineering. Here, we unlock a practical anion-binding catalytic strategy to address the historical dilemma in LCP. Our experimental and mechanistic studies demonstrate that commercially accessible hexafluoroisopropanol (HFIP), when used in high loading, can create higher-order HFIP aggregates to tame dormant-active species equilibrium via non-covalent anion-binding principle, in turn inducing distinctive polymerization kinetics behaviors that grant efficient chain propagation while minimizing competitive side reactions.

View Article and Find Full Text PDF

A hypoxia-targeting and hypoxia-responsive nano-probe for tumor detection and early diagnosis.

Biomater Sci

January 2025

Zhejiang Key Laboratory of Smart BioMaterials, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.

Accurate imaging of tumor hypoxia is critical for early cancer diagnosis and clinical outcomes, highlighting the great need for its detection specificity and sensitivity. In this report, we propose a probe (HTRNP) that simultaneously has hypoxia-targeting and hypoxia-responsive capabilities to enhance the tumor hypoxia imaging efficiency. HTRNP was successfully prepared through the encapsulation of Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP), which exhibits hypoxia-dependent phosphorescence, within the amphiphilic block copolymer OPDMA-PF, which has hypoxia-targeting tertiary amine -oxide moieties and hydrophobic perfluorobenzene ring structures, which highly improved the loading content and water solubility of PtPFPP.

View Article and Find Full Text PDF

Efficient Copolymerization of Methyl Methacrylate and Lactide Using Metalate Catalysts.

Macromol Rapid Commun

January 2025

Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL University, Paris, 75005, France.

The development of catalysts that are both robust and highly active at room temperature can often be seen as a major challenge in anionic polymerization. However, these properties are desirable for polymer synthesis because they allow for easy and sustainable production of interesting materials. Here, iron and magnesium complexes are used to form in situ generated metalate complexes that are shown to be highly active in the room temperature copolymerization of methyl methacrylate and lactide.

View Article and Find Full Text PDF

Tailored Nucleation-Growth Strategy for Precise Self-assembly of Block Copolymers.

Chemistry

January 2025

Beijing Institute of Technology, Polymer Materials, 5 Zhongguancun Nandajie, 100081, Beijing, CHINA.

The self-assembly of block copolymers (BCPs) to form nanostructures of various morphologies and controllable dimensions has been a very promising research area in nanotechnology in recent decades. This review mainly summarizes the recent advances in precise and controllable self-assembly of BCPs through a tailored nucleation-growth strategy to modulate the self-assembly behavior of the BCPs. These efforts have led to a better understanding of the self-assembly mechanisms and opened new possibilities for creating novel materials with designable properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!