The ability of " Accumulibacter phosphatis" to grow and remove phosphorus from wastewater under cycling anaerobic and aerobic conditions has also been investigated as a metabolism that could lead to simultaneous removal of nitrogen and phosphorus by a single organism. However, although phosphorus removal under cyclic anaerobic and anoxic conditions has been demonstrated, clarifying the role of ". Accumulibacter phosphatis" in this process has been challenging, since (i) experimental research describes contradictory findings, (ii) none of the published ". Accumulibacter phosphatis" genomes show the existence of a complete respiratory pathway for denitrification, and (iii) some genomes lacking a complete respiratory pathway have genes for assimilatory nitrate reduction. In this study, we used an integrated omics analysis to elucidate the physiology of a ". Accumulibacter phosphatis" strain enriched in a reactor operated under cyclic anaerobic and microaerobic conditions. The reactor's performance suggested the ability of the enriched ". Accumulibacter phosphatis" strain (clade IC) to simultaneously use oxygen and nitrate as electron acceptors under microaerobic conditions. A draft genome of this organism was assembled from metagenomic reads (". Accumulibacter phosphatis" UW-LDO-IC) and used as a reference to examine transcript abundance throughout one reactor cycle. The genome of UW-LDO-IC revealed the presence of a full pathway for respiratory denitrification. The observed transcript abundance patterns showed evidence of coregulation of the denitrifying genes along with a cytochrome, which has been characterized as having high affinity for oxygen. Furthermore, we identified an FNR-like binding motif upstream of the coregulated genes, suggesting transcription-level regulation of both denitrifying and respiratory pathways in UW-LDO-IC. Taking the results together, the omics analysis provides strong evidence that ". Accumulibacter phosphatis" UW-LDO-IC uses oxygen and nitrate simultaneously as electron acceptors under microaerobic conditions. " Accumulibacter phosphatis" is widely found in full-scale wastewater treatment plants, where it has been identified as the key organism for biological removal of phosphorus. Since aeration can account for 50% of the energy use during wastewater treatment, microaerobic conditions for wastewater treatment have emerged as a cost-effective alternative to conventional biological nutrient removal processes. Our report provides strong genomics-based evidence not only that ". Accumulibacter phosphatis" is the main organism contributing to phosphorus removal under microaerobic conditions but also that this organism simultaneously respires nitrate and oxygen in this environment, consequently removing nitrogen and phosphorus from the wastewater. Such activity could be harnessed in innovative designs for cost-effective and energy-efficient optimization of wastewater treatment systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446978 | PMC |
http://dx.doi.org/10.1128/mSystems.00193-18 | DOI Listing |
Environ Sci Technol
January 2025
School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States.
Phosphorus recovery through enhanced biological phosphorus removal (EBPR) processes from agricultural wastes holds promise in mitigating the impending global P shortage. However, the complex nutrient forms and the microbial augments, expected to exert a profound impact on crop rhizomicrobiome and thus crop health, remained unexplored. In this study, we investigated the impacts of EBPR biosolids on crops growth and rhizomicrobiome in comparison to chemical fertilizer and Vermont manure compost.
View Article and Find Full Text PDFWater Res
December 2024
School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China. Electronic address:
Sci Rep
June 2023
Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-363, Wrocław, Poland.
Despite many modern wastewater treatment solutions, the most common is still the use of activated sludge (AS). Studies indicate that the microbial composition of AS is most often influenced by the raw sewage composition (especially influent ammonia), biological oxygen demand, the level of dissolved oxygen, technological solutions, as well as the temperature of wastewater related to seasonality. The available literature mainly refers to the relationship between AS parameters or the technology used and the composition of microorganisms in AS.
View Article and Find Full Text PDFWater Environ Res
January 2023
Department of Civil and Environmental Engineering, University of Idaho, Moscow, Idaho, USA.
Research focused on interrogating post-anoxic enhanced biological phosphorus removal (EBPR) at bench and pilot scales. Average bench-scale effluent ranged from 0.33 to 1.
View Article and Find Full Text PDFmSystems
June 2022
Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg Universitygrid.5117.2, Aalborg, Denmark.
" Accumulibacter" was the first microorganism identified as a polyphosphate-accumulating organism (PAO) important for phosphorus removal from wastewater. Members of this genus are diverse, and the current phylogeny and taxonomic framework appear complicated, with most publicly available genomes classified as " Accumulibacter phosphatis," despite notable phylogenetic divergence. The marker gene allows for a finer-scale differentiation into different "types" and "clades"; nevertheless, taxonomic assignments remain inconsistent across studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!