Colorectal cancer (CRC) is one of the most common types of cancers, as evidenced by the >1.2 million patient diagnoses and 600,000 mortalities globally each year. Recently, the microRNA (miR/miRNA)-34 miRNA precursor family was revealed to participate in the tumor protein (TP)-53 pathway, which is frequently involved in CRC. Furthermore, the expression of miR-34 is reportedly regulated by DNA methylation. Accordingly, the present study investigated the correlation between the methylation status of miR-34 miRNAs and miR-34 expression in paired CRC tumor and normal tissues. The methylation status of miR-34a and miR-34b/c was determined using the MethyLight assay, and the expression of miR-34a and miR-34b/c in the same paired tissues was analyzed by reverse transcription-quantitative polymerase chain reaction. The results revealed significantly elevated miR-34a (P=0.012) and miR-34b/c (P<0.0001) methylation levels in tumor tissues when compared with normal tissues, whereas only the expression of miR-34b/c differed (P=0.005) between the paired tissues. In addition, an association between TP53 haplotypes and miR-34 family expression levels was observed. The miR-34a methylation levels in the TP53 PIN A1A1 (48.56±36.49) and TP53 MSP GG (49.00±36.44) genotypes were increased in the tumor tissues when compared with normal tissues. In conclusion, it was determined that miR-34 promoter methylation and TP53 polymorphisms may be associated with CRC pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6444414 | PMC |
http://dx.doi.org/10.3892/ol.2019.10092 | DOI Listing |
Int J Mol Sci
December 2024
Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia.
Doxorubicin (DOX), a cornerstone chemotherapeutic agent, effectively combats various malignancies but is marred by significant cardiovascular toxicity, including endothelial damage, chronic heart failure, and vascular remodeling. These adverse effects, mediated by oxidative stress, mitochondrial dysfunction, inflammatory pathways, and dysregulated autophagy, underscore the need for precise therapeutic strategies. Emerging research highlights the critical role of microRNAs (miRNAs) in DOX-induced vascular remodeling and cardiotoxicity.
View Article and Find Full Text PDFBiomedicines
November 2024
Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
Background: Dengue virus (DENV) is the most widespread mosquito-borne virus, which can cause dengue fever with mild symptoms, or progress to fatal dengue hemorrhagic fever and dengue shock syndrome. As the main target cells of DENV, macrophages are responsible for the innate immune response against the virus.
Methods: In this study, we investigated the role of pyroptosis in the pathogenic mechanism of dengue fever by examining the level of pyroptosis in DENV-1-infected macrophages and further screened differentially expressed microRNAs by high-throughput sequencing to predict microRNAs that could affect the pyroptosis of the macrophage.
Biomolecules
December 2024
Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, 50013 Zaragoza, Spain.
Alzheimer's disease (AD) is a neurodegenerative disorder that mainly affects the elderly population. It is characterized by cognitive impairment and dementia due to abnormal levels of amyloid beta peptide (Aβ) and axonal Tau protein in the brain. However, the complex underlying mechanisms affecting this disease are not yet known, and there is a lack of standardized biomarkers and therapeutic targets.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2025
Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, No. 21 Jiefang Road, Xi'an, Shaanxi Province, 710004, China.
World J Hepatol
December 2024
Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil.
Background: Genetic and epigenetic alterations are related to metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis.
Aim: To evaluate micro (mi)RNAs and lipophagy markers in an experimental model of metabolic dysfunction-associated steatohepatitis (MASH).
Methods: Adult male Sprague Dawley rats were randomized into two groups: Control group ( = 10) fed a standard diet; and intervention group ( = 10) fed a high-fat-choline-deficient diet for 16 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!