Medical Image Fusion Based on Fast Finite Shearlet Transform and Sparse Representation.

Comput Math Methods Med

School of Computer and Software, Nanjing University of Information Science & Technology, Nanjing 210044, China.

Published: September 2019

Clinical diagnosis has high requirements for the visual effect of medical images. To obtain rich detail features and clear edges for fusion medical images, an image fusion algorithm FFST-SR-PCNN based on fast finite shearlet transform (FFST) and sparse representation is proposed, aiming at the problem of poor clarity of edge details that is conducive to maintaining the details of source image in current algorithms. Firstly, the source image is decomposed into low-frequency coefficients and high-frequency coefficients by FFST. Secondly, the K-SVD method is used to train the low-frequency coefficients to obtain the overcomplete dictionary , and then the OMP algorithm sparsely encodes the low-frequency coefficients to complete the fusion of the low-frequency coefficients. Then, a high-frequency coefficient is applied to excite a pulse-coupled neural network, and the fusion coefficient of the high-frequency coefficient is selected according to the number of ignitions. Finally, the fused low-frequency coefficient and high-frequency coefficient are reconstructed into the fused medical image by FFST inverse transform. The experimental results show that the image fusion result of the proposed algorithm is about 35% higher than the comparison algorithms for the edge information transfer factor QAB/F index and has achieved good results in both subjective visual effects and objective evaluation indicators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421746PMC
http://dx.doi.org/10.1155/2019/3503267DOI Listing

Publication Analysis

Top Keywords

low-frequency coefficients
16
image fusion
12
high-frequency coefficient
12
medical image
8
based fast
8
fast finite
8
finite shearlet
8
shearlet transform
8
sparse representation
8
medical images
8

Similar Publications

Acoustic, Mechanical, and Thermal Characterization of Polyvinyl Acetate (PVA)-Based Wood Composites Reinforced with Beech and Oak Wood Fibers.

Polymers (Basel)

January 2025

Research Laboratory for Sustainable Development and Health, Department of Applied Physics, Faculty of Sciences and Technics, Cadi Ayyad University, Marrakesh 40000, Morocco.

Considering the growing need for developing ecological materials, this study investigates the acoustic, mechanical, and thermal properties of wood composites reinforced with beech or oak wood fibres. Scanning electron microscopy (SEM) revealed a complex network of interconnected pores within the composite materials, with varying pore sizes contributing to the material's overall properties. Acoustic characterization was conducted using a two-microphone impedance tube.

View Article and Find Full Text PDF

This paper focuses on the theoretical and analytical modeling of a novel seismic isolator termed the Passive Friction Mechanical Metamaterial Seismic Isolator (PFSMBI) system, which is designed for seismic hazard mitigation in multi-story buildings. The PFSMBI system consists of a lattice structure composed of a series of identical small cells interconnected by layers made of viscoelastic materials. The main function of the lattice is to shift the fundamental natural frequency of the building away from the dominant frequency of earthquake excitations by creating low-frequency bandgaps (FBGs) below 20 Hz.

View Article and Find Full Text PDF

Simulation Research on Low-Frequency Magnetic Noise in Fe-Based Nanocrystalline Magnetic Shields.

Materials (Basel)

January 2025

School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China.

Depending on high permeability, high Curie temperature, and low eddy current loss noise, nanocrystalline alloys, as the innermost layer, exhibit great potential in the construction of cylindrical magnetic shielding systems with a high shielding coefficient and low magnetic noise. This study compares a magnetic noise of 1 Hz, simulated by the finite element method (FEM), of a cylindrical nanocrystalline magnetic shield with different structural parameters based on the measured initial permeability of commercial Fe-based nanocrystalline (1K107). The simulated results demonstrate that the magnetic noise is irrelevant to the pump and probe hole diameter.

View Article and Find Full Text PDF

Relationship Between Frequency Domain Indicators of Heart Rate Variability and Both Age and Duration of Illness in Patients with Headache: A Cross-Sectional Study.

Biomedicines

December 2024

Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea.

: One of the most prevalent neurological conditions in the world, headaches impact a large number of people. Patients who experience headaches often have autonomic nervous system dysfunction, which can influence the onset and duration of headaches. Heart rate variability (HRV) serves as an indicator of the autonomic nervous system's activity and balance.

View Article and Find Full Text PDF

Background: Neurovascular coupling (NVC), as indicated by a comprehensive analysis of the amplitude of low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), provides mechanistic insights into neurological disorders. Patients undergoing peritoneal dialysis (PD) and hemodialysis (HD) often face cognitive impairment, the causes of which are not fully understood.

Methods: ALFF was derived from functional magnetic resonance imaging, and CBF was quantified using arterial spin labeling in a cohort comprising 58 patients with PD, 60 patients with HD and 62 healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!