Amide proton transfer (APT) imaging is a novel molecular MRI technique to detect endogenous mobile proteins and peptides through chemical exchange saturation transfer. In this preliminary study, the purpose was to evaluate the feasibility of APT imaging in monitoring the early therapeutic response to nitroxoline (NTX) in a temozolomide (TMZ)-resistant glioblastoma multiforme (GBM) mouse model, which was compared with diffusion-weighted imaging (DWI). Here, we prepared TMZ-resistant GBM mouse model (n = 12), which were treated with 100 mg/kg/day of NTX (n = 4) or TMZ (n = 4), or saline (n = 4) for 7 days for the evaluation of short-term treatment by using APT imaging and DWI sequentially. The APT signal intensities and apparent diffusion coefficient (ADC) values were calculated and compared before and after treatment. Moreover, immunohistological analysis was also employed for the correlation between APT imaging and histopathology. The association between the APT value and Ki-67 labeling index was evaluated by using simple linear regression analysis. The short-term NTX treatment resulted in significant decrease in APT value as compared to untreated and TMZ group, in which APT signals were increased. However, we did not observe significantly increased mean ADC value following short-term NTX treatment. The Ki-67 labeling index shows a correlation with APT value. APT imaging could show the earlier response to NTX treatment as compared to ADC values in a TMZ-resistant mouse model. We believe that APT imaging can be a useful imaging biomarker for the early therapeutic evaluation in GBM patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447588 | PMC |
http://dx.doi.org/10.1038/s41598-019-42088-y | DOI Listing |
Anal Chem
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Cixi Biomedical Research Institute, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.
Accurate identification of cancer cells under complex physiological environments holds great promise for noninvasive diagnosis and personalized medicine. Herein, we developed dual-aptamer-based DNA logic-gated series lamp probes (Apt-SLP) by coupling a DNA cell-classifier (DCC) with a self-powered signal-amplifier (SSA), enabling rapid and sensitive identification of cancer cells in a blood sample. DCC is endowed with two extended-aptamer based modules for recognizing the two cascade cell membrane receptors and serves as a DNA logic gate to pinpoint a particular and narrow subpopulation of cells from a larger population of similar cells.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China. Electronic address:
In situ cell imaging plays a crucial role in studying physiological and pathological processes of cells. Proximity ligation assay (PLA) and rolling circle amplification (RCA) are commonly used to study the abundance and interactions of biological macromolecules. The most frequently applied strategy to visualize the RCA products is with single-fluorophore probe, however, cellular auto-fluorescence and unbound fluorescent probes could interfere with RCA products, leading to non-specific signals.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Radiology, Tongren People's Hospital, Tongren, Guizhou Province, 554300, China.
Purpose: To assess the effectiveness of Amide Proton Transfer (APT) imaging in predicting the histopathological characteristics of cervical cancer.
Methods: A comprehensive literature search was conducted across multiple databases, covering studies until December 27, 2023. The meta-analysis was performed using Stata 15 and Review Manager 5.
Anal Chem
January 2025
New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
NMR Biomed
February 2025
Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
Asymmetry is a natural characteristic of Parkinson's disease (PD), which can be used to distinguish PD from atypical parkinsonism. Chemical exchange saturation transfer (CEST) has demonstrated value in reflecting the subtle changes related to neuron loss and abnormal protein accumulation in PD but has not been used to investigate asymmetry in PD. This study aimed to examine asymmetrical changes in the mesencephalic nucleus of PD patients with motor asymmetry using four-pool CEST analysis and to explore the relationship between imaging asymmetry and motor asymmetry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!