Inhibition of hexokinases holds potential as treatment strategy for rheumatoid arthritis.

Arthritis Res Ther

Research Center for Medicinal Biotechnology, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong Academy of Medical Sciences, #18877, Jingshi Road, Jinan, 250062, China.

Published: April 2019

Introduction: Abnormal glycolytic metabolism contributes to joint inflammation and destruction in rheumatoid arthritis (RA). We examine the expression and function of hexokinases in RA and evaluate the potential of their specific inhibitor for clinical treatment.

Methods: Detection of HKs was assessed in synovial tissue by immunohistology and Western blot. SiRNA and a specific hexokinases inhibitor, lonidamine (LND), were used to evaluate the role of hexokinase-I/II (HK-I/II). Pro-inflammatory and glycolysis factors, cell viability, and apoptosis were assessed by ELISA, RT-qPCR, MTS, and flow cytometry. The clinical effects of LND on type II collagen-induced arthritis (CIA) in DBA-/1 mouse model was evaluated by scoring their clinical responses, synovitis, and cartilage destructions, and ELISA was employed to analyze the concentrations of antibody in the serum of CIA model.

Results: HK-I/II expression and their activities increased in the synovium of RA compared with osteoarthritis (OA). Silencing HK-I/II (siHK-I/II) or LND treatment decreased the production of pro-inflammatory factors, such as IL-6, IL-8, CXCL9, CXCL10, and CXCL11, and cell viability, but induced cell apoptosis of RASFs. The expression of TNF-α and IL-1β of macrophage in response to LPS stimulation were depressed as well after treatment with siHK-I/II or LND. Furthermore, leucocyte infiltration co-cultured with RASFs was also suppressed after inhibiting the expression or activity of HK-I/II. These anti-inflammatory effects overlapped with their anti-glycolytic activities. Treatment with LND in mice with CIA decreased the production of antibodies against IgG1, IgG2a, and IgG2b and consequently attenuated joint inflammation and destruction.

Conclusions: HK-I/II contribute to shape the inflammatory phenotype of RASFs and macrophages. LND may be a potential drug in treating patients with RA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446273PMC
http://dx.doi.org/10.1186/s13075-019-1865-3DOI Listing

Publication Analysis

Top Keywords

rheumatoid arthritis
8
joint inflammation
8
cell viability
8
sihk-i/ii lnd
8
decreased production
8
lnd
6
hk-i/ii
5
inhibition hexokinases
4
hexokinases holds
4
holds potential
4

Similar Publications

Collapsing glomerulopathy (CG) has a severe course typically associated with viral infections, especially HIV and parvovirus B19, systemic lupus erythematosus (SLE), among other etiologies. A 35-year-old woman with recent use of a JAK inhibitor due to rheumatoid arthritis presented with a 2-week history of fever, cervical adenopathy, and facial erythema. After admission, anemia, hypoalbuminemia, proteinuria, and severe acute kidney injury were noted.

View Article and Find Full Text PDF

Previous studies have suggested an association between autoimmune diseases (AIDs) and the risk of prostate cancer (PCa). However, the causal relationship between AID and PCa remained unclear. The purpose of this study was to investigate the causal association between 3 common AIDs, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and ankylosing spondylitis (AS), and the risk of PCa.

View Article and Find Full Text PDF

The rheumatoid factor (RF) is a representative autoantibody against the crystallizable fragment (Fc) of denatured immunoglobulin (Ig) G that are primarily detected in patients with rheumatoid arthritis (RA). Although five types of tumor necrosis factor (TNF) inhibitors can be used to treat RA, no guidelines are available for selecting the appropriate inhibitor for treatment. High serum RF levels are associated with high disease activity, progressive joint destruction, life prognosis associated with organ damage, decreased treatment responsiveness to TNF inhibitors and other drugs, and low treatment retention rates.

View Article and Find Full Text PDF

Harnessing the Power of Machine Learning Guided Discovery of NLRP3 Inhibitors Towards the Effective Treatment of Rheumatoid Arthritis.

Cells

December 2024

Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea.

The NLRP3 inflammasome, plays a critical role in the pathogenesis of rheumatoid arthritis (RA) by activating inflammatory cytokines such as IL1β and IL18. Targeting NLRP3 has emerged as a promising therapeutic strategy for RA. In this study, a multidisciplinary approach combining machine learning, quantitative structure-activity relationship (QSAR) modeling, structure-activity landscape index (SALI), docking, molecular dynamics (MD), and molecular mechanics Poisson-Boltzmann surface area MM/PBSA assays was employed to identify novel NLRP3 inhibitors.

View Article and Find Full Text PDF

Background: Airway inflammation is considered one of the pathogenic factors in rheumatoid arthritis (RA), but the role of chronic obstructive pulmonary disease (COPD) in the development of RA remains unclear. We used cross-sectional studies and Mendelian randomization (MR) analysis to explore the link between COPD and RA.

Methods: In National Health and Nutrition Examination Survey (NHANES) 2013-2018, the association between COPD and RA was investigated using weighted logistic regression models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!