Background: Mesenchymal stem cells (MSCs) and their cellular response to various stimuli have been characterized in great detail in culture conditions. In contrast, the cellular response of MSCs in an in vivo setting is still uncharted territory. In this study, we investigated the cellular response of MSCs following transplantation into spinal cord injury (SCI).
Methods: Mouse bone marrow-derived MSCs were transplanted 24 h following severe contusion SCI in mice. As controls, MSCs transplanted to the uninjured spinal cord and non-transplanted MSCs were used. At 7 days post transplantation, the MSCs were isolated from the SCI, and their global transcriptional changes, survival, differentiation, proliferation, apoptosis, and phenotypes were investigated using RNA sequencing, immunohistochemistry, and flow cytometry.
Results: MSCs transplanted into SCI downregulated genes related to cell-cycle regulation/progression, DNA metabolic/biosynthetic process, and DNA repair and upregulated genes related to immune system response, cytokine production/response, response to stress/stimuli, signal transduction and signaling pathways, apoptosis, and phagocytosis/endocytosis. MSCs maintained their surface expression of Sca1 and CD29 but upregulated expression of CD45 following transplantation. Transplanted MSCs maintained their surface expression of MHC-I but upregulated surface expression of MHC-II. Transplanted MSCs survived and proliferated to a low extent, did not express Caspase-3, and did not differentiate into neurons or astrocytes.
Conclusion: MSCs transplanted into SCI upregulate expression of CD45 and MHC-II and expression of genes related to cytokine production, phagocytosis/endocytosis, and immune cells/response and thereby adopt immune cell-like characteristics within the recipient.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448247 | PMC |
http://dx.doi.org/10.1186/s13287-019-1218-9 | DOI Listing |
Exp Neurol
January 2025
Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. Electronic address:
Ischemic stroke results in significant long-term disability and mortality worldwide. Although existing therapies, such as recombinant tissue plasminogen activator and mechanical thrombectomy, have shown promise, their application is limited by stringent conditions. Mesenchymal stem cell (MSC) transplantation, especially using SB623 cells (modified human bone marrow-derived MSCs), has emerged as a promising alternative, promoting neurogenesis and recovery.
View Article and Find Full Text PDFIntroduction: Mesenchymal stem cell (MSC)-based therapies have emerged as a promising approach for treating articular cartilage injuries. However, enhancing the chondrogenic differentiation potential of MSCs remains a significant challenge. KDM6B, a histone demethylase that specifically removes H3K27me3 marks, is essential in controlling the maturation of chondrocytes.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Life Science, Northeast Forestry University, Harbin 150040, China.
Melanoma is among the most common malignancies and has recently exhibited increased resistance to treatments, resulting in a more aggressive disease course. Mesenchymal stem cells (MSCs) secrete cytokines both in vivo and in vitro, which regulate tumor cell signaling pathways and the tumor microenvironment, thereby influencing tumor progression. This study investigates the anti-melanogenesis effects of sheep umbilical cord mesenchymal stem cells (SUCMSCs) to assess their potential application in melanoma treatment.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China.
Myocardial infarction (MI) is a highly challenging and fatal disease, with diverse challenges arising at different stages of its progression. As such, non-coding RNAs (ncRNAs), which can broadly regulate cell fate, and stem cells with multi-differentiation potential are emerging as novel therapeutic approaches for treating MI across its various stages. NcRNAs, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs), can directly participate in regulating intracellular signaling pathways, influence cardiac angiogenesis, and promote the repair of infarcted myocardium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!