Fifteen patients with exertional angina underwent hemodynamic monitoring and measurement of cardiac output during a control treadmill exercise test. They were then randomized to receive sustained-release nitroglycerin, 13 mg (group I) or placebo (group II). Repeat exercise testing revealed that in group I, both maximal oxygen consumption and cardiac output increased significantly. In group II neither maximal oxygen consumption nor cardiac output increased significantly. All patients then received diltiazem, 60 mg, and repeat testing was carried out 1 hour later. In group I maximal oxygen consumption and cardiac output were higher than control, but were no higher than after nitroglycerin. In group II, maximal oxygen consumption increased significantly, but the increase in cardiac output was not significant. Thus, sustained-release nitroglycerin, 13 mg, or diltiazem, 60 mg, both improve exercise performance, but the combination does not improve exercise performance to an extent greater than either drug alone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0002-9149(86)90344-9DOI Listing

Publication Analysis

Top Keywords

cardiac output
20
group maximal
16
maximal oxygen
16
oxygen consumption
16
consumption cardiac
12
sustained-release nitroglycerin
8
nitroglycerin group
8
output increased
8
improve exercise
8
exercise performance
8

Similar Publications

Background: Type I myocardial infarction (T1MI) or type II myocardial infarction (T2MI) have different underlying mechanisms; however, in the setting of cardiogenic shock (CS), it is not understood if patients experience resultantly different outcomes. The objective of this study was to determine clinical features, biomarker patterns, and outcomes in these subgroups.

Methods: Patients from the CAPITAL-DOREMI trial presenting with acute myocardial infarction-associated CS (n = 103) were classified as T1MI (n = 61) or T2MI (n = 42).

View Article and Find Full Text PDF

Background: Whether medium-term increased water intake alone, or in combination with co-adjuvant nonexercise interventions aimed to expand blood volume (BV), improve the human cardiovascular phenotype and cardiorespiratory fitness remains unexplored.

Objectives: The purpose of this study was to determine the medium-term impact of increased (+40%) fluid (water) intake (IFI) or IFI plus head-up sleep (IFI + HUS) on BV and the cardiovascular phenotype in healthy individuals.

Methods: Healthy adults (n = 35, age 42 ± 18 years, 51% female) matched by sex, age, body composition, physical activity, and cardiorespiratory fitness were randomly allocated to IFI or IFI + HUS for 3 months.

View Article and Find Full Text PDF

Myocardial fibrosis leads to cardiac dysfunction and arrhythmias in heart failure with preserved ejection fraction (HFpEF), but the underlying mechanisms remain poorly understood. Here, RNA sequencing identifies Forkhead Box1 (FoxO1) signaling as abnormal in male HFpEF hearts. Genetic suppression of FoxO1 alters the intercellular communication between cardiomyocytes and fibroblasts, alleviates abnormal diastolic relaxation, and reduces arrhythmias.

View Article and Find Full Text PDF

High-Throughput Zebrafish Screening Reveals Cardiotoxic Effects of Organophosphate Flame Retardants.

Environ Res

January 2025

International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, P.R. China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, P.R. China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, P.R. China. Electronic address:

The toxicity of organophosphorus flame retardants (OPFRs) remains poorly understood, despite their widespread environmental presence and potential risks to human and ecological health. This study aimed to characterize the cardiovascular developmental toxicity of OPFRs using a high-throughput zebrafish screening model. Over thirty representative OPFRs, classified into three major groups-alkyl, aryl, and halogenated-were evaluated.

View Article and Find Full Text PDF

Temporal properties of transcutaneous direct current motor conduction block.

J Neural Eng

January 2025

Physical Medicine and Rehabilitation, The MetroHealth System, 2500 Metrohealth Dr, Cleveland, OH 44109, USA, Cleveland, Ohio, 44109-1998, UNITED STATES.

Direct current (DC) electrical block of peripheral nerve conduction shows promise for clinical applications to treat spasticity, pain, and cardiac arrhythmias. Most previous work has used invasive nerve cuffs. Here we investigate the potential of non-invasive transcutaneous direct current motor block (tDCB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!