PCNA-Mediated Degradation of p21 Coordinates the DNA Damage Response and Cell Cycle Regulation in Individual Cells.

Cell Rep

Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany; Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, Berlin, Germany. Electronic address:

Published: April 2019

To enable reliable cell fate decisions, mammalian cells need to adjust their responses to dynamically changing internal states by rewiring the corresponding signaling networks. Here, we combine time-lapse microscopy of endogenous fluorescent reporters with computational analysis to understand at the single-cell level how the p53-mediated DNA damage response is adjusted during cell cycle progression. Shape-based clustering revealed that the dynamics of the CDK inhibitor p21 diverges from the dynamics of its transcription factor p53 during S phase. Using mathematical modeling, we predict and experimentally validate that S phase-specific degradation of p21 by PCNA-CRL4 is sufficient to explain these heterogeneous responses. This highlights how signaling pathways and cell regulatory networks intertwine to adjust the cellular response to the individual needs of a given cell.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2019.03.031DOI Listing

Publication Analysis

Top Keywords

degradation p21
8
dna damage
8
damage response
8
cell cycle
8
cell
5
pcna-mediated degradation
4
p21 coordinates
4
coordinates dna
4
response cell
4
cycle regulation
4

Similar Publications

The Notch intracellular domain (NICD) regulates gene expression during development and homeostasis in a transcription factor complex that binds DNA either as monomer, or cooperatively as dimers. Mice expressing Notch dimerization-deficient (NDD) alleles of Notch1 and Notch2 have defects in multiple tissues that are sensitized to environmental insults. Here, we report that cardiac phenotypes and DSS (Dextran Sodium Sulfate) sensitivity in NDD mice can be ameliorated by housing mice under hypo-allergenic conditions (food/bedding).

View Article and Find Full Text PDF

Transketolase promotes osteosarcoma progression through the YY1-PAK4 axis.

FEBS J

January 2025

Department of Orthopedics, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Osteosarcoma, a malignant bone tumor that occurs in adolescents, proliferates and is prone to pulmonary metastasis. Osteosarcoma is characterized by high genotypic heterogeneity, making it difficult to identify reliable anti-osteosarcoma targets. The genotype of osteosarcoma may be highly dynamic, but its high dependence on energy remains constant.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophinutrophin (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target.

View Article and Find Full Text PDF

The Gene Product STIL Is Essential for Dendritic Spine Formation.

Cells

January 2025

Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan.

Dendritic spine formation/maintenance is highly dependent on actin cytoskeletal dynamics, which is regulated by small GTPases Rac1 and Cdc42 through their downstream p21-activated kinase/LIM-kinase-I/cofilin pathway. ARHGEF7, also known as ß-PIX, is a guanine nucleotide exchange factor for Rac1 and Cdc42, thereby activating Rac1/Cdc42 and the downstream pathway, leading to the upregulation of spine formation/maintenance. We found that STIL, one of the primary microcephaly gene products, is associated with ARHGEF7 in dendritic spines and that knockdown of resulted in a significant reduction in dendritic spines in neurons both in vitro and in vivo.

View Article and Find Full Text PDF

Mutations in the KRAS gene in non-small cell lung cancer (NSCLC) are common drivers. Gene expression and mutation data of NSCLC were collected from the TCGA dataset. DEGs between KRAS mutations and wild type were identified, and enrichment analysis was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!