Recurrent epidemics of drug-resistant Staphylococcus aureus illustrate the rapid lapse of antibiotic efficacy following clinical implementation. Over the last decade, community-associated methicillin-resistant S. aureus (MRSA) has emerged as a dominant cause of infections, and this problem is amplified by the hyper-virulent nature of these isolates. Herein, we report the discovery of a fungal metabolite, apicidin, as an innovative means to counter both resistance and virulence. Owing to its breadth and specificity as a quorum-sensing inhibitor, apicidin antagonizes all MRSA agr systems in a non-biocidal manner. In skin challenge experiments, the apicidin-mediated abatement of MRSA pathogenesis corresponds with quorum-sensing inhibition at in vivo sites of infection. Additionally, we show that apicidin attenuates MRSA-induced disease by potentiating innate effector responses, particularly through enhanced neutrophil accumulation and function at cutaneous challenge sites. Together, these results indicate that apicidin treatment represents a strategy to limit MRSA virulence and promote host defense.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224364 | PMC |
http://dx.doi.org/10.1016/j.celrep.2019.03.018 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Microbiology, Hind Institute of Medical Sciences, Mau, Ataria, Sitapur, Uttar Pradesh, India, 261303.
Methicillin-resistant Staphylococcus aureus (MRSA) continues to pose significant challenges in healthcare settings due to its multi-drug resistance (MDR) and virulence. This retrospective study examines the molecular and resistance profiles of MRSA isolates from a tertiary care hospital in Saudi Arabia, providing valuable insights into regional epidemiology. A total of 190 MRSA strains were analysed to assess antimicrobial susceptibility, genetic diversity, and virulence factors.
View Article and Find Full Text PDFJ Infect Dis
January 2025
Department of Pediatrics, University of California Irvine School of Medicine, Irvine, CA 92697, USA.
Background: Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is associated with high rates of treatment failure, even when antibiotics showing in vitro susceptibility are used. Early optimization of therapy is crucial to reduce morbidity and mortality. Building on our previous research on carbapenem therapy for methicillin-susceptible S.
View Article and Find Full Text PDFMicroorganisms
December 2024
Grupo de Investigación Celular y Molecular de Microorganismos Patógenos, Department of Biological Scieces, Universidad de los Andes, Bogotá 111711, Colombia.
is a human pathogen responsible for a wide range of diseases, such as skin and soft tissue infections, pneumonia, toxic shock syndrome, and urinary tract infections. Methicillin-resistant (MRSA) is a well-known pathogen with consistently high mortality rates. Detecting the resistance gene and phenotypical profile to β-lactams allows for the differentiation of MRSA from methicillin-susceptible (MSSA) isolates.
View Article and Find Full Text PDFAntibiotics (Basel)
November 2024
Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
: The anti-restriction protein ArdA-H1, found in multiresistant (MRSA) strains from the ST239-SCCIII lineage, inhibits restriction-modification systems, fostering horizontal gene transfer (HGT) and supporting genetic adaptability and resistance. This study investigates the regulatory mechanisms controlling H1 expression in under various stress conditions, including acidic pH, iron limitation, and vancomycin exposure, and explores the roles of the Agr quorum sensing system. : The expression of H1 was analyzed in strains exposed to environmental stressors using real-time quantitative reverse transcription PCR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!