Flow patterns of a Taylor-Couette-Poiseuille flow were studied at low axial Reynolds and rotational Taylor numbers (Re ≤ 10.5, Ta ≤ 319). The radius ratio of the inner and outer cylinders was 0.804 and the ratio of the length of the annulus to the gap width was 44.5. Complete map of the studied flow regimes was elaborated. The axial and azimuthal components of the wall shear rate γ were measured at the outer fixed cylinder using a three-segment electrodiffusion probe. The components of the wall shear rate of helices have never been measured in previous investigations. Spatio-temporal description of multiple flow patterns was obtained using flow visualizations and simultaneous measurements of wall shear rate components. The flow structures include Taylor vortices, helices winding in the same direction as the base flow or in the opposite direction, helices that were stagnant or moving in the axial direction, smooth or with superposed azimuthal waves, among others. The influence of different flow structures on the wall shear stress components is discussed with and without axial base flow. It was found that the wall shear stress is a function of Ta but no significant dependence on Re was observed for the studied flow regimes and that the mean wall shear stress increases with the number of azimuthal waves. It was also noted that the ED probes provide a more detailed information about flow patterns than torque measurements and visualizations described in the literature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447155PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212728PLOS

Publication Analysis

Top Keywords

wall shear
24
flow
12
flow patterns
12
shear rate
12
shear stress
12
taylor-couette-poiseuille flow
8
studied flow
8
flow regimes
8
components wall
8
flow structures
8

Similar Publications

Iliac Vein Compression Syndrome (IVCS) is a common risk factor for deep vein thrombosis in the lower extremities. The objective of this study was to investigate whether employing a porous medium model to simulate the compressed region of an iliac vein could improve the reliability and accuracy of Computational Fluid Dynamics (CFD) analysis outcomes of IVCS. Pre-operative Computed Tomography (CT) scan images of patients with IVCS were utilized to reconstruct models illustrating both the compression and collateral circulation of the iliac vein.

View Article and Find Full Text PDF

Wall shear stress modulates metabolic pathways in endothelial cells.

Metabolomics

January 2025

Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.

Introduction: Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.

View Article and Find Full Text PDF

Background: Left ventricular assist device (LVAD) has been widely used as an alternative treatment for heart failure, however, aortic regurgitation is a common complication in patients with LVAD support. And the O-A angle (the angle between LVAD outflow graft and the aorta) is considered as a vital factor associated with the function of aortic valve. To date, the biomechanical effect of the O-A angle on the aortic valve remains largely unknown.

View Article and Find Full Text PDF

A multi-modal computational fluid dynamics model of left atrial fibrillation haemodynamics validated with 4D flow MRI.

Biomech Model Mechanobiol

January 2025

Laboratoire d'Imagerie Biomédicale (LIB), Institut National de La Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Sorbonne Université, Paris, France.

Atrial fibrillation (AF) is characterized by rapid and irregular contraction of the left atrium (LA). Impacting LA haemodynamics, this increases the risk of thrombi development and stroke. Flow conditions preceding stroke in these patients are not well defined, partly due the limited resolution of 4D flow magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

A Computational Fluid Dynamics Analysis of BiPAP Pressure Settings on Airway Biomechanics Using a CT-Based Respiratory Tract Model.

Respir Physiol Neurobiol

January 2025

School of Mechanical and Mechatronic Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia. Electronic address:

Central and Obstructive Sleep Apnea (CSA and OSA), Chronic Obstructive Pulmonary Disease (COPD), and Obesity Hypoventilation Syndrome (OHS) disrupt breathing patterns, posing significant health risks and reducing the quality of life. Bilevel Positive Airway Pressure (BiPAP) therapy offers adjustable inhalation and exhalation pressures, potentially enhancing treatment adaptability for the above diseases. This is the first-ever study that employs Computational Fluid Dynamics (CFD) to examine the biomechanical impacts of BiPAP under four settings: Inspiratory Positive Airway Pressure (IPAP)/Expiratory Positive Airway Pressure (EPAP) of 12/8, 16/6, and 18/8 cmHO, compared to a without-BiPAP scenario of zero-gauge pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!