Review of Transient Receptor Potential Canonical (TRPC5) Channel Modulators and Diseases.

J Med Chem

Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center, Omaha , Nebraska 68198-6125 , United States.

Published: September 2019

Transient receptor potential canonical (TRPC) channels are highly homologous, nonselective cation channels that form many homo- and heterotetrameric channels. These channels are highly abundant in the brain and kidney and have been implicated in numerous diseases, such as depression, addiction, and chronic kidney disease, among others. Historically, there have been very few selective modulators of the TRPC family in order to fully understand their role in disease despite their physiological significance. However, that has changed recently and there has been a significant increase in interest in this family of channels which has led to the emergence of selective tool compounds, and even preclinical drug candidates, over the past few years. This review will cover these new advancements in the discovery of TRPC modulators and the emergence of newly reported structural information which will undoubtedly lead to even greater advancements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.8b01954DOI Listing

Publication Analysis

Top Keywords

transient receptor
8
receptor potential
8
potential canonical
8
channels highly
8
channels
5
review transient
4
canonical trpc5
4
trpc5 channel
4
channel modulators
4
modulators diseases
4

Similar Publications

Clostridioides difficile, a spore-forming anaerobic bacterium, is the primary cause of hospital antibiotic-associated diarrhea. Key virulence factors, toxins A (TcdA) and B (TcdB), significantly contribute to C. difficile infection (CDI).

View Article and Find Full Text PDF

Transient receptor potential channel subfamily M member 3 (TRPM3) is a Ca-permeable cation channel activated by the neurosteroid pregnenolone sulfate (PregS) or heat, serving as a nociceptor in the peripheral sensory system. Recent discoveries of autosomal dominant neurodevelopmental disorders caused by gain-of-function mutations in TRPM3 highlight its role in the central nervous system. Notably, the TRPM3 inhibitor primidone, an anticonvulsant, has proven effective in treating patients with TRPM3-linked neurological disorders and in mouse models of thermal nociception.

View Article and Find Full Text PDF

Genome-wide characterization of the TRP gene family and transcriptional expression profiles under different temperatures in gecko Hemiphyllodactylus yunnanensis.

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China. Electronic address:

Temperature is closely linked to the life history of organisms, and thus thermoception is an important sensory mechanism. Transient receptor potential (TRP) ion channels are the key mediators of thermal sensation. In this study, we analyzed the sequence characteristics of TRPs in gecko Hemiphyllodactylus yunnanensis and compared the phylogenetic relationships of TRP family members among different Squamata species.

View Article and Find Full Text PDF

Genistein-3'-sodium sulfonate suppresses NLRP3-mediated cell pyroptosis after cerebral ischemia.

Metab Brain Dis

January 2025

Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.

Cerebral ischemia-induced pyroptosis contributes to the dissemination of neuroinflammation, and Nod-like receptor protein-3 (NLRP3) inflammasome plays a key role in this process. Previous studies have indicated that Genistein-3'-sodiumsulfonate (GSS) can inhibit neuroinflammation caused by cerebral ischemia, exert cerebroprotective effects, but its specific mechanism has not been comprehensively understood. The aim of this study was to explore the effect of GSS on ischemic stroke-induced cell pyroptosis.

View Article and Find Full Text PDF

Natural phenylethanoid glycoside forsythoside A alleviates androgenetic alopecia by selectively inhibiting TRPV3 channels in mice.

Eur J Pharmacol

January 2025

Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.

Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!