Patellar tendon structure responds to load over a 7-week preseason in elite male volleyball players.

Scand J Med Sci Sports

Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

Published: July 2019

The purpose of this study was to investigate the relation between external and internal load and the response of the patellar tendon structure assessed with ultrasound tissue characterization (UTC) in elite male volleyball players during preseason. Eighteen players were followed over 7 weeks, measuring four load parameters during every training and match: volume (minutes played), rating of perceived exertion (RPE) (ranging from 6 to 20), weekly load (RPE*volume), and jump frequency (number of jumps). Patellar tendon structure was measured biweekly using UTC, which quantifies tendon matrix stability resulting in four different echo types (I-IV). On average, players spent 615 min/wk on training and matches with an RPE of 13.9 and a jump frequency of 269. Load evaluation shows significant changes over the 7 weeks: Volume and weekly load parameters were significantly higher in week 3 than week 7 and in week 4 than week 2. Weekly load performed in week 4 was significantly higher than week 7. No significant changes were observed in tendon structure. On the non-dominant side, no significant correlations were found between changes in load parameters and echo types. At the dominant side, a higher weekly volume and weekly load resulted in a decrease of echo type I and a higher mean RPE in an increase of echo type II. The results of this study show that both external and internal load influence changes in patellar tendon structure of elite male volleyball players. Monitoring load and the effect on patellar tendon structure may play an important role in injury prevention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850050PMC
http://dx.doi.org/10.1111/sms.13428DOI Listing

Publication Analysis

Top Keywords

tendon structure
24
patellar tendon
20
weekly load
16
elite male
12
male volleyball
12
volleyball players
12
load parameters
12
week week
12
load
11
external internal
8

Similar Publications

: Unlike road running, mountain and trail running typically cover longer distances and include uphill and downhill segments that impose unique physiological and mechanical demands on athletes. : This study aimed to identify morphological differences in the patellar and Achilles tendons between trail and road runners. Moreover, the potential influence of weekly mileage and accumulated positive elevation gain on the morphology of both tendons was obtained.

View Article and Find Full Text PDF

Hierarchy Reproduction: Multiphasic Strategies for Tendon/Ligament-Bone Junction Repair.

Biomater Res

January 2025

Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China.

Tendon/ligament-bone junctions (T/LBJs) are susceptible to damage during exercise, resulting in anterior cruciate ligament rupture or rotator cuff tear; however, their intricate hierarchical structure hinders self-regeneration. Multiphasic strategies have been explored to fuel heterogeneous tissue regeneration and integration. This review summarizes current multiphasic approaches for rejuvenating functional gradients in T/LBJ healing.

View Article and Find Full Text PDF

Tendon-mimicking anisotropic alginate-based double-network composite hydrogels with enhanced mechanical properties and high impact absorption.

Carbohydr Polym

March 2025

School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. Electronic address:

Tendons are anisotropic tissues with exceptional mechanical properties, which result from their unique anisotropic structure and mechanical behavior under stress. While research has focused on replicating anisotropic structures and mechanical properties of tendons, fewer studies have examined their specific mechanical behaviors. Here, we present a simple method for creating calcium-crosslinked alginate-based double-network hydrogels that mimics tendons by exhibiting anisotropic structure, high mechanical strength and toughness, and a distinctive "toe region" when stretched.

View Article and Find Full Text PDF

Achilles tendon rupture is a common and serious condition that remains a challenge in the restoration of tendon structure and function. The design and use of high-performance piezoelectric materials serve as an effective solution to enhance repair outcomes, shorten recovery times, and reduce the risk of recurrence. In this study, we prepared a chitosan piezoelectric gel (CSPG) as an organic polymer with excellent biocompatibility, stretchability, and piezoelectric properties as well as excellent antibacterial properties.

View Article and Find Full Text PDF

Aim: Latissimus dorsi is a multi-purpose muscle that can be used to repair defects in many areas of the body. The current study aims to investigate latissimus dorsi morphometry, innervation, vascularization, and variational situations in fetuses.

Material And Methods: Forty-nine fetuses, aged between 15 and 40 weeks of gestation, were examined for the morphological development of the latissimus dorsi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!