Importance: For patients with chronic kidney disease (CKD), hyperkalemia is common, associated with fatal arrhythmias, and often asymptomatic, while guideline-directed monitoring of serum potassium is underused. A deep-learning model that enables noninvasive hyperkalemia screening from the electrocardiogram (ECG) may improve detection of this life-threatening condition.

Objective: To evaluate the performance of a deep-learning model in detection of hyperkalemia from the ECG in patients with CKD.

Design, Setting, And Participants: A deep convolutional neural network (DNN) was trained using 1 576 581 ECGs from 449 380 patients seen at Mayo Clinic, Rochester, Minnesota, from 1994 to 2017. The DNN was trained using 2 (leads I and II) or 4 (leads I, II, V3, and V5) ECG leads to detect serum potassium levels of 5.5 mEq/L or less (to convert to millimoles per liter, multiply by 1) and was validated using retrospective data from the Mayo Clinic in Minnesota, Florida, and Arizona. The validation included 61 965 patients with stage 3 or greater CKD. Each patient had a serum potassium count drawn within 4 hours after their ECG was recorded. Data were analyzed between April 12, 2018, and June 25, 2018.

Exposures: Use of a deep-learning model.

Main Outcomes And Measures: Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity, with serum potassium level as the reference standard. The model was evaluated at 2 operating points, 1 for equal specificity and sensitivity and another for high (90%) sensitivity.

Results: Of the total 1 638 546 ECGs, 908 000 (55%) were from men. The prevalence of hyperkalemia in the 3 validation data sets ranged from 2.6% (n = 1282 of 50 099; Minnesota) to 4.8% (n = 287 of 6011; Florida). Using ECG leads I and II, the AUC of the deep-learning model was 0.883 (95% CI, 0.873-0.893) for Minnesota, 0.860 (95% CI, 0.837-0.883) for Florida, and 0.853 (95% CI, 0.830-0.877) for Arizona. Using a 90% sensitivity operating point, the sensitivity was 90.2% (95% CI, 88.4%-91.7%) and specificity was 63.2% (95% CI, 62.7%-63.6%) for Minnesota; the sensitivity was 91.3% (95% CI, 87.4%-94.3%) and specificity was 54.7% (95% CI, 53.4%-56.0%) for Florida; and the sensitivity was 88.9% (95% CI, 84.5%-92.4%) and specificity was 55.0% (95% CI, 53.7%-56.3%) for Arizona.

Conclusions And Relevance: In this study, using only 2 ECG leads, a deep-learning model detected hyperkalemia in patients with renal disease with an AUC of 0.853 to 0.883. The application of artificial intelligence to the ECG may enable screening for hyperkalemia. Prospective studies are warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6537816PMC
http://dx.doi.org/10.1001/jamacardio.2019.0640DOI Listing

Publication Analysis

Top Keywords

deep-learning model
20
serum potassium
16
ecg leads
12
95%
9
dnn trained
8
mayo clinic
8
hyperkalemia
7
ecg
7
deep-learning
6
model
6

Similar Publications

Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.

View Article and Find Full Text PDF

Background: Recent advances in artificial intelligence have facilitated the automatic diagnosis of middle ear diseases using endoscopic tympanic membrane imaging.

Aim: We aimed to develop an automated diagnostic system for middle ear diseases by applying deep learning techniques to tympanic membrane images obtained during routine clinical practice.

Material And Methods: To augment the training dataset, we explored the use of generative adversarial networks (GANs) to produce high-quality synthetic tympanic images that were subsequently added to the training data.

View Article and Find Full Text PDF

Integrating Model-Informed Drug Development With AI: A Synergistic Approach to Accelerating Pharmaceutical Innovation.

Clin Transl Sci

January 2025

Global Biometrics and Data Management, Pfizer Research and Development, New York, New York, USA.

The pharmaceutical industry constantly strives to improve drug development processes to reduce costs, increase efficiencies, and enhance therapeutic outcomes for patients. Model-Informed Drug Development (MIDD) uses mathematical models to simulate intricate processes involved in drug absorption, distribution, metabolism, and excretion, as well as pharmacokinetics and pharmacodynamics. Artificial intelligence (AI), encompassing techniques such as machine learning, deep learning, and Generative AI, offers powerful tools and algorithms to efficiently identify meaningful patterns, correlations, and drug-target interactions from big data, enabling more accurate predictions and novel hypothesis generation.

View Article and Find Full Text PDF

Accurate segmentation of the left ventricular myocardium in cardiac MRI is essential for developing reliable deep learning models to diagnose left ventricular non-compaction cardiomyopathy (LVNC). This work focuses on improving the segmentation database used to train these models, enhancing the quality of myocardial segmentation for more precise model training. We present a semi-automatic framework that refines segmentations through three fundamental approaches: (1) combining neural network outputs with expert-driven corrections, (2) implementing a blob-selection method to correct segmentation errors and neural network hallucinations, and (3) employing a cross-validation process using the baseline U-Net model.

View Article and Find Full Text PDF

The Loess Plateau in northwest China features fragmented terrain and is prone to landslides. However, the complex environment of the Loess Plateau, combined with the inherent limitations of convolutional neural networks (CNNs), often results in false positives and missed detection for deep learning models based on CNNs when identifying landslides from high-resolution remote sensing images. To deal with this challenge, our research introduced a CNN-transformer hybrid network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!