Developing efficient anode materials with low electrode voltage, high specific capacity and superior rate capability is urgently required on the road to commercially viable sodium-ion batteries (SIBs). Aiming at finding a new SIB anode material, we investigate the electrochemical properties of NaxTiO2 compounds with unprecedented penta-oxygen-coordinated trigonal bipyramid (TB) structures by using first-principles calculations. Identifying the four different TB phases, we perform the optimization of their crystal structures and calculate their energetics such as sodium binding energy, formation energy, electrode potential and activation energy for Na ion migration. The computations reveal that the TB-I phase is the best choice among the four TB phases for a SIB anode material due to a relatively low volume change of under 4% upon Na insertion, low electrode voltage under 1.0 V with a possibility of realizing the highest specific capacity of ∼335 mA h g-1 from full sodiation at x = 1, and reasonably low activation barriers under 0.35 eV at the Na content from x = 0.125 to x = 0.5. Through the analysis of electronic density of states and charge density difference upon sodiation, we find that the NaxTiO2 compounds in TB phases change from electron insulating to electron conducting materials due to the electron transfer from Na atoms to Ti ions, offering the Ti4+/Ti3+ redox couple for SIB operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp00267g | DOI Listing |
Molecules
January 2025
Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
The importance of fluorine and aluminum in all aspects of daily life has led to an enormous increase in human exposure to these elements in their various forms. It is therefore important to understand the routes of exposure and to investigate and understand the potential toxicity. Of particular concern are aluminum-fluoride complexes (AlF), which are able to mimic the natural isostructural phosphate group and influence the activity of numerous essential phosphoryl transferases.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromso̷, Norway.
Building upon an earlier study of heme-nitrosyl complexes (. , , 20496-20505), we examined a wide range of nonheme {FeNO} complexes (the superscript represents the Enemark-Feltham count) and two dinitrosyl iron complexes using DMRG-CASSCF calculations. Analysis of the wave functions in terms of resonance forms with different [π*(NO)] occupancies (where = 0-4 for mononitrosyl complexes) identified the dominant electronic configurations of {FeNO} and {FeNO} complexes as Fe-NO and Fe-NO, respectively, mirroring our previous findings on heme-nitrosyl complexes.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of Patras, Patras 265 04, Greece.
A new [DyBiOCl(saph)] () Werner-type cluster has been prepared, which is the first Dy/Bi polynuclear compound with no metal-metal bond and one of the very few Ln-Bi (Ln = lanthanide) heterometallic complexes reported to date. The molecular compound has been deliberately transformed to its 1-D analogue [DyBiO(N)(saph)] () via the replacement of the terminal Cl ions by end-to-end bridging N groups. The overall metallic skeleton of (and ) can be described as consisting of a diamagnetic {Bi} unit with an elongated trigonal bipyramidal topology, surrounded by a magnetic {Dy} equilateral triangle, which does not contain μ-oxo/hydroxo/alkoxo groups.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand.
Dinuclear aluminum complexes bearing a constrained 'indanimine' ligand based on a short hydrazine bridge were synthesized. Single-crystal X-ray crystallography reveals bimetallic penta-coordinated aluminum centers having a distorted trigonal bipyramidal geometry. A short Al-Al distance of 4.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid () and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid () have been synthesized. Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (H, C and Sn) spectroscopy and X-ray diffraction study. A solution state NMR analysis reveals a four-coordinated tributyltin(IV) complex in non-polar solvents, while an X-Ray crystallographic analysis confirms a five-coordinated trigonal-bipyramidal geometry around the tin atom due to the formation of 1D chains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!