A survey for antibiotic-resistant (AR) Escherichia coli in wastewater was undertaken by collecting samples from primary clarifiers and secondary effluents from seven geographically dispersed US wastewater treatment plants (WWTPs). Samples were collected at each WWTP in cool and summer months and cultured using selective media. The resulting isolates were characterized for resistance to imipenem, ciprofloxacin, cefotaxime, and ceftazidime, presence of carbapenemase and extended-spectrum beta-lactamase (ESBL) genes, and phylogroups and sequence types (STs). In total, 322 AR E. coli isolates were identified, of which 65 were imipenem-resistant. Of the 65 carbapenem-resistant E. coli (CREC) isolates, 62% were positive for more than one and 31% were positive for two or more of carbapenemase and ESBL genes targeted. The most commonly detected carbapenemase gene was bla (n = 36), followed by bla (n = 2). A widespread dispersal of carbapenem-resistant STs and other clinically significant AR STs observed in the present study suggested the plausible release of these strains into the environment. The occurrence of CREC in wastewater is a potential concern because this matrix may serve as a reservoir for gene exchange and thereby increase the risk of AR bacteria (including CR) being disseminated into the environment and thence back to humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669892 | PMC |
http://dx.doi.org/10.2166/wh.2019.165 | DOI Listing |
Iran J Microbiol
December 2024
Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
Background And Objectives: is a common pathogen associated with healthcare-related infections. It is particularly notable for its ability to develop resistance to multiple antibiotics, making treatment challenging. During the COVID-19 pandemic, increased antibiotic use to manage critically ill patients was contributed to the rise of multidrug-resistant .
View Article and Find Full Text PDFVet Sci
November 2024
Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh.
Antimicrobial resistance (AMR) is a growing global concern and poses a significant threat to public health. The emergence of multidrug-resistant organisms, including , also presents a risk of transmission to humans through the food chain, including milk. This study aimed to investigate the prevalence of in raw milk in the Chattogram metropolitan area (CMA) of Bangladesh and their phenotypic and genotypic antimicrobial resistance patterns.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Republic of Korea.
The emergence of the multidrug-resistant (MDR) ST131 clone has significantly impacted public health. With traditional antibiotics becoming less effective against MDR bacteria, there is an urgent need for alternative treatment options. This study aimed to isolate and characterize four lytic phages (EC.
View Article and Find Full Text PDFAdv Biomed Res
October 2024
Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
Background: Amid the COVID-19 pandemic, the surge in hospital admissions and widespread use of broad-spectrum antibiotics have heightened the risk of hospital-acquired infections from multidrug-resistant (MDR) organisms, particularly . It is imperative to implement stringent measures to curb the spread of antimicrobial resistance in hospitals and devise robust treatment strategies for patients grappling with such infections. To confront this challenge, a comprehensive study was undertaken to examine MDR extended-spectrum beta-lactamase (MDR-ESBL)-producing isolates from patients with nosocomial infections following the COVID-19 pandemic in Northern Iran.
View Article and Find Full Text PDFInfect Dis Now
December 2024
Texas Tech University School of Veterinary Medicine, Amarillo, TX 79106, USA. Electronic address:
Background: This study aimed to explore the distribution of beta-lactamase genes in Enterobacteriaceae from human clinical samples.
Methods: We analyzed data from 83 countries through the Antimicrobial Testing Leadership and Surveillance program, spanning 2004 to 2021. We calculated the proportion of each β-lactamase gene across nine bacterial species and generated a heatmap for β-lactamase genes with a frequency of ≥ 1 % in at least one species.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!