Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fluorescence-encoded infrared (FEIR) spectroscopy is an ultrafast technique that uses a visible pulse to up-convert information about IR-driven vibrations into a fluorescent electronic population. Here we present an updated experimental approach to FEIR that achieves high sensitivity through confocal microscopy, high repetition rate excitation, and single-photon counting. We demonstrate the sensitivity of our experiment by measuring ultrafast vibrational transients and Fourier transform spectra of increasingly dilute solutions of a coumarin dye. We collect high-quality data at 40 μM (∼2 orders of magnitude below the limit for conventional IR) and make measurements down to the 10-100 nM range (∼5 orders of magnitude) before background signals become overwhelming. At 10 nM we measure the average number of molecules in the focal volume to be ∼20 using fluorescence correlation spectroscopy. This level of sensitivity opens up the possibility of performing fluctuation correlation vibrational spectroscopy or-with further improvement-single-molecule measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.9b00748 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!