There are many metabolic disorders that present with bone phenotypes. In some cases, the pathological bone symptoms are the main features of the disease whereas in others they are a secondary characteristic. In general, the generation of the bone problems in these disorders is not well understood and the therapeutic options for them are scarce. Bone development occurs in the early stages of embryonic development where the bone formation, or osteogenesis, takes place. This osteogenesis can be produced through the direct transformation of the pre-existing mesenchymal cells into bone tissue (intramembranous ossification) or by the replacement of the cartilage by bone (endochondral ossification). In contrast, bone remodeling takes place during the bone's growth, after the bone development, and continues throughout the whole life. The remodeling involves the removal of mineralized bone by osteoclasts followed by the formation of bone matrix by the osteoblasts, which subsequently becomes mineralized. In some metabolic diseases, bone pathological features are associated with bone development problems but in others they are associated with bone remodeling. Here, we describe three examples of impaired bone development or remodeling in metabolic diseases, including work by others and the results from our research. In particular, we will focus on hereditary multiple exostosis (or osteochondromatosis), Gaucher disease, and the susceptibility to atypical femoral fracture in patients treated with bisphosphonates for several years.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jimd.12097 | DOI Listing |
Objective: The aim of this study is to test the feasibility of a custom 3D-printed guide for performing a minimally invasive cochleostomy for cochlear implantation.
Study Design: Prospective performance study.
Setting: Secondary care.
PLoS One
January 2025
Department of Pediatrics, China Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
Introduction: Short stature is a frequent complication of DMD, and its pathomechanisms and influencing factors are specific to this disease and the idiosyncratic treatment for DMD.
Purpose: To establish the height growth curve of early DMD, and evaluate the potential influencing markers on height growth, provide further evidence for pathological mechanism, height growth management and bone health in DMD.
Methods: A retrospective, cross-sectional study of 348 participants with DMD aged 2-12 years was conducted at West China Second Hospital of Sichuan University from January 2023 to October 2023.
Medicine (Baltimore)
January 2025
Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Rationale: Synovial sarcoma (SS) is a rare and highly malignant soft tissue sarcoma. When SS occurs in atypical locations, it can present significant diagnostic challenges. We report a case of paraspinal SS initially misdiagnosed as spinal tuberculosis, highlighting the diagnostic difficulties and the importance of considering SS in the differential diagnosis.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
The infiltration and excessive polarization of M1 macrophages contribute to the induction and persistence of low-grade inflammation in joint-related degenerative diseases such as osteoarthritis (OA). The lipid metabolism dysregulation promotes M1 macrophage polarization by coordinating the compensatory pathways of the inflammatory and oxidative stress responses. Here, a self-assembling, licofelone-loaded nanoparticle (termed LCF-CSBN), comprising chondroitin sulfate and bilirubin joined by an ethylenediamine linker, is developed to selectively reprogram lipid metabolism in macrophage activation.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China.
Diabetes exacerbates periodontitis by overexpressing reactive oxygen species (ROS), which leads to periodontal bone resorption. Consequently, it is imperative to relieve inflammation and promote alveolar bone regeneration comprehensively for the development of diabetic periodontal treatment strategies. Furthermore, an orderly treatment to avoid interference between these two processes can achieve the optimal therapeutic effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!