Temozolomide (TMZ) is the first choice chemotherapy agent against glioblastoma, but the TMZ chemotherapy resistance has restricted the clinical application. Although autophagy is considered an adaptive response for cell survival under the pressure of chemotherapy and associated with chemotherapy resistance, its initiator and the precise molecular mechanism remains unknown. In the present study, it was determined that TMZ increases the transient receptor potential cation channel subfamily C member 5 (TRPC5) protein expression and the basal autophagy level, and the upregulation of autophagy is mediated by TRPC5 in glioma cells. Additionally, knockdown of TRPC5 upregulated the chemotherapy sensitivity in vitro and in vivo. Furthermore, TRPC5‑small interfering RNA and pharmacological inhibition indicated that the Ca2+/calmodulin dependent protein kinase β (CaMKKβ)/AMP‑activated protein kinase α (AMPKα)/mechanistic target of rapamycin kinase (mTOR) pathway mediates cell survival autophagy during TMZ treatment. In addition, TMZ‑resistant U87/TMZ cells retained a high basal autophagy level, while silence of TRPC5 expression or inhibition of autophagy reversed TMZ resistance. Thus, the present study revealed that TRPC5, an initiator of autophagy, upregulated TMZ resistance via the CaMKKβ/AMPKα/mTOR pathway and this indicated a novel therapeutic site for drug resistance in glioma chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2019.7095 | DOI Listing |
Sci Rep
January 2025
Children's Research Center, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland.
De-regulated protein expression contributes to tumor growth and progression in medulloblastoma (MB), the most common malignant brain tumor in children. MB is associated with impaired differentiation of specific neural progenitors, suggesting that the deregulation of proteins involved in neural physiology could contribute to the transformed phenotype in MB. Calsynthenin 1 (CLSTN1) is a neuronal protein involved in cell-cell interaction, vesicle trafficking, and synaptic signaling.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany.
Targeting of diseased cells is one of the most urgently needed prerequisites for a next generation of potent pharmaceuticals. Different approaches pursued fail mainly due to a lack of specific surface markers. Developing an RNA-based methodology, we can now ensure precise cell targeting combined with selective expression of effector proteins for therapy, diagnostics or cell steering.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
Glioblastoma (GBM) is the most common intracranial malignancy, but current treatment options are limited. Super-enhancers (SEs) have been found to drive the expression of key oncogenes in GBM. However, the role of SE-associated long non-coding RNAs (lncRNAs) in GBM remains poorly understood.
View Article and Find Full Text PDFPrev Nutr Food Sci
December 2024
Department of Culinary Arts & Hotel Food Service, Yeonsung University, Gyeonggi 14011, Korea.
The inhibitory effect of L. on adipocyte differentiation can be enhanced by lactic acid bacteria (LAB) fermentation. In this study, we assessed the cellulose resolution, L.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Background: Muscle-invasive bladder cancer (MIBC) is a prevalent cancer characterized by molecular and clinical heterogeneity. Assessing the spatial heterogeneity of the MIBC microenvironment is crucial to understand its clinical significance.
Methods: In this study, we used imaging mass cytometry (IMC) to assess the spatial heterogeneity of MIBC microenvironment across 185 regions of interest in 40 tissue samples.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!