Familial renal glucosuria (FRG) is a rare condition that involves isolated glucosuria despite normal blood glucose levels. Mutations in the solute carrier family 5 member 2 (SLC5A2) gene, which encodes sodium‑glucose cotransporter 2 (SGLT2), have been reported to be responsible for the disease. Genetic testing of the SLC5A2 gene was conducted in a Chinese family with FRG. A number of online tools were used to predict the potential effect of the identified mutations on SGLT2 function. Additionally, the SLC5A2 mutations previously reported in PubMed were summarized. A novel compound heterozygous mutation (c.514T>C, p.W172R; c.1540C>T, p.P514S) of the SLC5A2 gene in a Chinese child with FRG was identified. In total, 86 mutations of the SLC5A2 gene have been reported to be associated with FRG. The novel compound heterozygous mutation (c.514T>C, p.W172R; c.1540C>T, p.P514S) of the SLC5A2 gene may be responsible for the onset of FRG. The present study provides a starting point for further investigation of the molecular pathogenesis of the SLC5A2 gene mutation in patients with FRG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472135PMC
http://dx.doi.org/10.3892/mmr.2019.10110DOI Listing

Publication Analysis

Top Keywords

slc5a2 gene
24
novel compound
12
compound heterozygous
12
heterozygous mutation
12
slc5a2
8
familial renal
8
renal glucosuria
8
chinese family
8
mutation c514t>c
8
c514t>c pw172r
8

Similar Publications

Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as important agents for the treatment of type 2 diabetes mellitus (T2DM). SGLT2 inhibitors have been associated with improved cardiovascular outcomes, not only through their immediate hemodynamic effects-such as glycosuria and (at least temporary) increased natriuresis-but also due to their multifaceted impact on metabolism. Recently, studies have also focused on the effects of SGLT2 inhibitors on adipose tissue.

View Article and Find Full Text PDF

Genetic association of type 2 diabetes and antidiabetic drug target with skin cancer.

Front Med (Lausanne)

November 2024

Department of Dermatology, Ganmei Affiliated Hospital of Kunming Medical University, First People's Hospital of Kunming, Kunming, China.

Background: Several observational studies have suggested that type 2 diabetes (T2D) is a risk factor for skin cancer, and antidiabetic drugs may reduce skin cancer risk. Nevertheless, the findings remain ambiguous. This Mendelian randomization (MR) study aimed to investigate the causal association of T2D with skin cancer and evaluate the potential impact of antidiabetic drug targets on skin cancer.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to identify genetic factors contributing to treatment-resistant nocturnal enuresis in children who had already undergone various therapies.
  • Twenty-one patients aged 5-18 with treatment-resistant enuresis were analyzed using a specialized genetic panel that included 19 genes associated with the condition.
  • Results showed that 20 patients had no significant genetic changes, while one patient had a variant in the AQP2 gene, suggesting that nocturnal enuresis is likely influenced by multiple factors rather than a single genetic cause.
View Article and Find Full Text PDF

SGLT2 inhibitors (SGLT2i) and GLP1 receptor (GLP1R) agonists have kidney protective effects. To better understand their molecular effects, RNA sequencing was performed in SGLT2-positive proximal tubule segments isolated by immunostaining-guided laser capture microdissection. Male adult DBA wild-type (WT) and littermate diabetic Akita mice ± knockout (-KO) were given vehicle or SGLT2i dapagliflozin (dapa; 10 mg/kg diet) for 2 wk, and other Akita mice received GLP1R agonist semaglutide [sema; 3 nmol/(kg body wt·day), sc].

View Article and Find Full Text PDF

The interaction between non-coding RNAs and SGLT2: A review.

Int J Cardiol

October 2023

Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland. Electronic address:

Sodium-glucose cotransporter 2 (SGLT2, SLC5A2) is a promising target for a new class of drug primarily established as kidney-targeting as well as emerging class of glucose-lowering drugs in diabetes. Studies showed that SGLT2 inhibitors also have a systemic impact via indirectly targeting the heart and kidneys which exerts broad cardio- and nephroprotective effects. Additionally, as cancer cells tightly require glucose supply, studies also questioned how SGLT2 inhibitors impact molecular pathology and cellular metabolism in cancer hallmarks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!