Apoptosis of vascular smooth muscle cells (VSMCs) is a process that regulates vessel remodeling in various cardiovascular diseases. The specific mechanisms that control VSMC apoptosis remain unclear. The present study aimed to investigate whether microRNA‑494 (miR‑494) is involved in regulating VSMC apoptosis and its underlying mechanisms. Cell death ELISA and terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling assays were used to detect apoptosis of murine VSMCs following stimulation with tumor necrosis factor‑α (TNF‑α). The results indicated that TNF‑α upregulated VSMC apoptosis in a dose‑dependent manner. Microarray analysis was used to evaluate the expression profile of microRNAs following TNF‑α stimulation in murine VSMCs. The expression of miR‑494 was downregulated, whereas B‑cell lymphoma-2‑like 11 (BCL2L11) protein expression levels were upregulated in VSMCs following treatment with TNF‑α. Luciferase reporter assays confirmed that BCL2L11 was a direct target of miR‑494. Transfection with miR‑494 mimics decreased VSMC apoptosis and downregulated BCL2L11 protein levels. Conversely, transfection with miR‑494 inhibitors increased cell apoptosis and upregulated BCL2L11 protein levels, suggesting that miR‑494 may function as an essential regulator of BCL2L11. The increase in apoptosis caused by miR‑494 inhibitors was abolished in cells co‑transfected with BCL2L11‑targeting small interfering RNA. The findings of the present study revealed that miR‑494 inhibited TNF‑α‑induced VSMC apoptosis by downregulating the expression of BCL2L11.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2019.10085 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!