The Plasmodium subtilisin-like serine protease SUB1 is expressed in hepatic and both asexual and sexual blood parasite stages. SUB1 is required for egress of invasive forms of the parasite from both erythrocytes and hepatocytes, but its subcellular localisation, function, and potential substrates in the sexual stages are unknown. Here, we have characterised the expression profile and subcellular localisation of SUB1 in Plasmodium berghei sexual stages. We show that the protease is selectively expressed in mature male gametocytes and localises to secretory organelles known to be involved in gamete egress, called male osmiophilic bodies. We have investigated PbSUB1 function in the sexual stages by generating P. berghei transgenic lines deficient in PbSUB1 expression or enzyme activity in gametocytes. Our results demonstrate that PbSUB1 plays a role in male gamete egress. We also show for the first time that the PbSUB1 substrate PbSERA3 is expressed in gametocytes and processed by PbSUB1 upon gametocyte activation. Taken together, our results strongly suggest that PbSUB1 is not only a promising drug target for asexual stages but could also be an attractive malaria transmission-blocking target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766862 | PMC |
http://dx.doi.org/10.1111/cmi.13028 | DOI Listing |
PLoS Pathog
December 2024
Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany.
Transmission of the malaria parasite Plasmodium to mosquitoes necessitates gamete egress from red blood cells to allow zygote formation and ookinete motility to enable penetration of the midgut epithelium. Both processes are dependent on the secretion of proteins from distinct sets of specialized vesicles. Inhibiting some of these proteins has shown potential for blocking parasite transmission to the mosquito.
View Article and Find Full Text PDFCell Rep
June 2024
Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA. Electronic address:
The protozoan parasite Cryptosporidium is a leading cause of diarrhea in young children. The parasite's life cycle involves a coordinated and timely progression from asexual to sexual stages, leading to the formation of the transmissible oocyst. Underlying molecular signaling mechanisms orchestrating sexual development are not known.
View Article and Find Full Text PDFParasitol Int
August 2024
Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan. Electronic address:
Reducing Plasmodium parasite transmission via the mosquito vector is a promising strategy for malaria control and elimination in endemic regions. In the mosquito midgut after the ingestion of an infected blood meal, malaria parasite gametes egress from erythrocytes and fertilize to develop into motile ookinetes that traverse midgut epithelial cells and transform into oocysts adjacent the basal lamina. Plasmodium ookinetes and young oocysts possess a unique organelle called the crystalloid; which has a honeycomb-like matrix structure and is indicated to be involved in sporozoite formation and maturation.
View Article and Find Full Text PDFMem Inst Oswaldo Cruz
March 2024
Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil.
Background: Malaria is an infectious disease caused by protozoan parasites belonging to the genus Plasmodium. Human-to-human transmission depends on a mosquito vector; thus, the interruption of parasite transmission from humans to mosquitoes is an important approach in the fight against malaria. The parasite stages infectious to mosquitoes are the gametocytes, sexual stages that are ingested by the vector during a blood meal and transform into male and female gametes in the midgut.
View Article and Find Full Text PDFMol Microbiol
March 2024
Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany.
The transmission of malaria parasites to mosquitoes is dependent on the formation of gametocytes. Once fully matured, gametocytes are able to transform into gametes in the mosquito's midgut, a process accompanied with their egress from the enveloping erythrocyte. Gametocyte maturation and gametogenesis require a well-coordinated gene expression program that involves a wide spectrum of regulatory proteins, ranging from histone modifiers to transcription factors to RNA-binding proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!