A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functionalization of silicene and silicane with benzaldehyde. | LitMetric

Functionalization of silicene and silicane with benzaldehyde.

J Mol Model

Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Código Postal, 22800, Ensenada, Baja California, Mexico.

Published: April 2019

Organic functionalization of nanomaterials offers exceptional flexibility in materials design, and applications in molecular sensors and molecular electronics are expected. However, more studies should be conducted to understand the interaction between nanomaterials and organic molecules. In this work, we studied the functionalization of silicene and silicane with benzaldehyde, performing nudged elastic band calculations within density functional theory. We calculated the structural changes of the adsorption process, electronic properties of the main states, and the energetics. In silicene, the adsorption of benzaldehyde on the top site was found to be the most stable, with an adsorption energy of -0.55 eV. For silicane, the functionalization proceeds through a self-propagating reaction on a highly reactive dangling bond generated by a hydrogen atom vacancy. Benzaldehyde adsorbed on this site depicts an adsorption energy of -1.39 eV, which is larger than in bare silicene. Upon attaching, the double C=O bond breaks down turning the molecule into a highly reactive radical, which in this case, abstracts a neighboring H atom of the sheet. This process is highly achievable since the energy barrier to abstract the H atoms is 0.81 eV, whereas the one needed to desorb the molecule is 1.39 eV. After H abstraction, a new dangling bond is generated at the substrate, making a chain reaction possible to potentially form benzaldehyde monolayers. Organic functionalization is an excellent tool to engineer properties of 2D systems, and having a deeper understanding of the adsorption processes is the first step toward the development of new generation devices. Graphical abstract Benzaldehyde adsorbed on silicene and silicane.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-019-3997-4DOI Listing

Publication Analysis

Top Keywords

silicene silicane
12
functionalization silicene
8
silicane benzaldehyde
8
organic functionalization
8
adsorption energy
8
highly reactive
8
dangling bond
8
bond generated
8
benzaldehyde adsorbed
8
benzaldehyde
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!