Genome-wide mapping of adult plant stripe rust resistance in wheat cultivar Toni.

Theor Appl Genet

State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.

Published: June 2019

Two adult plant stripe rust resistance QTL, QYrto.swust-3AS and QYrto.swust-3BS, were identified and mapped in common wheat cultivar Toni. The two QTL were located to corresponding positions in the wheat physical map position based on flanking SNP markers. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important foliar diseases of wheat. Characterization and utilization of resistance genes are the most effective, economic and environmental-friendly way to control the disease. The wheat cultivar Toni resistant at the adult plant stage to predominant Chinese Pst races was crossed with the susceptible genotype Mingxian 169. A recombinant inbred line population comprising 171 lines was tested in the field at three locations in the 2016 and 2017 crop seasons. The Affymetrix Axiom 35 K single-nucleotide polymorphism (SNP) Wheat Breeder's Genotyping Array was used to map quantitative trait loci (QTL) for adult plant resistance to stripe rust. Inclusive composite interval mapping identified stable QTL QYrto.swust-3AS and QYrto.swust-3BS that explained 31.6-48.2% and 21.9-56.3% of the variation in stripe rust severity and infection type, respectively. The two QTL regions were anchored to the wheat IWGSC Ref Seq v1.0 sequence. QYrto.swust-3AS was localized to a 2.22-Mb interval flanked by SNP markers AX-95240191 and AX-94828890. Among 65 HC (high confidence) annotated genes in this region, 11 (16.9%) contained NB-ARC domains and 9 (13.8%) contained protein kinase domains and thus could contribute to disease resistance. QYrto.swust-3BS was localized to a 4.77-Mb interval flanked by SNP markers AX-94509749 and AX-94998050. One hundred and thirty three HC genes are annotated in this region. Among them, 14 (10.5%) protein kinase domain genes may contribute to disease resistance. The linked markers should be useful for marker-assisted selection in breeding for resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-019-03308-1DOI Listing

Publication Analysis

Top Keywords

stripe rust
20
adult plant
16
wheat cultivar
12
cultivar toni
12
snp markers
12
plant stripe
8
rust resistance
8
qtl qyrtoswust-3as
8
qyrtoswust-3as qyrtoswust-3bs
8
interval flanked
8

Similar Publications

Stripe rust, induced by f. sp. (), is one of the most destructive fungal diseases of wheat worldwide.

View Article and Find Full Text PDF

Wheat stripe rust, caused by a biotrophic, obligate fungus f. sp. (), is a destructive wheat fungal disease that exists worldwide and caused huge yield reductions during pandemic years.

View Article and Find Full Text PDF

Virulence Characterization and Population Structure of f. sp. in Henan Province, China.

Plant Dis

January 2025

Northwest A&F University, College of Plant Protection, xinong road 22,Yangling, Shaanxi,, PO box, 13#, Yangling, Shaanxi, China, 712100;

Wheat stripe rust, caused by f. sp. (), poses a significant threat to wheat production, particularly in Henan province, which produces more than 36 million tons of wheat grain every year, the highest production among all provinces in China.

View Article and Find Full Text PDF

Wheat ( spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually.

View Article and Find Full Text PDF

Evaluation of resistance and molecular detection of resistance genes to wheat stripe rust of 82 wheat cultivars in Xinjiang, China.

Sci Rep

December 2024

Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China.

Wheat stripe rust is a fungal disease caused by Puccinia striiformis f. sp. tritici.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!