There is an urgent need for new sustainable solutions to support agriculture in facing current environmental challenges. In particular, intensification of productivity and food security needs require sustainable exploitation of natural resources and metabolites. Here, we bring the attention to the agronomic potential of volatile organic compounds (VOCs) emitted from leaves, as a natural and eco-friendly solution to defend plants from stresses and to enhance crop production. To date, application of VOCs is often limited to fight herbivores. Here we argue that potential applications of VOCs are much wider, as they can also protect from pathogens and environmental stresses. VOCs prime plant's defense mechanisms for an enhanced resistance/tolerance to the upcoming stress, quench reactive oxygen species (ROS), have potent antimicrobial as well as allelopathic effects, and might be important in regulating plant growth, development, and senescence through interactions with plant hormones. Current limits and drawbacks that may hamper the use of VOCs in open field are analyzed, and solutions for a better exploitation of VOCs in future sustainable agriculture are envisioned.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434774 | PMC |
http://dx.doi.org/10.3389/fpls.2019.00264 | DOI Listing |
Obes Rev
January 2025
Inserm UMR 1256 Nutrition-Genetics-Environmental Risk Exposure (N-G-ERE), University of Lorraine, Nancy, France.
Limited literature addresses the association between pollution, stress, and obesity, and knowledge synthesis on the associations between these three topics has yet to be made. Two reviewers independently conducted a systematic review of MEDLINE, Embase, and Web of Science Core Collection databases to identify studies dealing with the effects of semi-volatile organic compounds, pesticides, conservatives, and heavy metals on the psychosocial stress response and adiposity in humans, animals, and cells. The quality of papers and risk assessment were evaluated with ToxRTool, BEES-C instrument score, SYRCLE's risk of bias tool, and CAMARADES checklist.
View Article and Find Full Text PDFAnal Methods
November 2017
KIST Europe GmbH, 66123, Saarbrücken, Germany.
Controlled fragrance release at the right time, in the right place, depending on the context remains a technological challenge in the areas of psychophysiology, biochemistry and the entertainment industry. In this study, we demonstrate how bulk poly(dimethylsiloxane) (PDMS) templates may effectively take up and retain volatile organic compounds of essential orange oil in the original form without significantly shifting the scent profile. This is done depending on the sampling approach that follows a controllable and slow fragrance release maintaining a constant ratio of volatile compounds in a template-thickness, temperature and time-dependent manner.
View Article and Find Full Text PDFChemosphere
January 2025
College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore. Electronic address:
Airborne particulate matter (PM) poses significant environmental and health challenges, particularly in urban areas. This study investigated the characteristics of water-soluble organic compounds (WSOC) in PM (PM with an aerodynamic diameter of 2.5 μm or less) in Singapore, a tropical Asian city-state, over a six-month period.
View Article and Find Full Text PDFAnimal
December 2024
Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Campus Chillán, Chillán 3812120, Chile. Electronic address:
Climate change and food safety standards have intensified research into plant-based compounds as alternatives to dietary supplements in animal feed. These compounds can reduce enteric methane (CH) emissions and the formation of ruminal ammonia. This study investigated the effects of radiata pine bark extract (PBE) supplementation on CH production, ruminal fermentation parameters, and nutrient disappearance using the rumen simulation technique in diets with different forage-to-concentrate (F:C) ratios.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 2112 Cyprus.
Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!