Perception of the time interval between one's own action (a finger tapping) and the associated sensory feedback (a visual flash or an auditory beep) is critical for precise and flexible control of action and behavioral decision. Previous studies have examined temporal averaging for multiple time intervals and its role for perceptual organization and crossmodal integration. In the present study, we extended the temporal averaging from sensory stimuli to the coupling of action and its sensory feedback. We investigated whether and how temporal averaging could be achieved with respect to the multiple intervals in a sequence of action-sensory feedback events, and hence affect the subsequent timing behavior. In unimodal task, participants voluntarily tapped their index finger at a constant pace while receiving auditory feedback (beeps) with varied intervals as well as variances throughout the sequence. In crossmodal task, for a given sequence, each tap was accompanied randomly with either visual flash or auditory beep as sensory feedback. When the sequence was over, observers produced a subsequent tap with either auditory or visual stimulus, which enclose a probe interval. In both tasks, participants were required to make a two alternative forced choice (2AFC), to indicate whether the target interval is shorter or longer than the mean interval between taps and their associated sensory events in the preceding sequence. In both scenarios, participants' judgments of the probe interval suggested that they had internalized the mean interval associated with specific bindings of action and sensation, showing a robust temporal averaging process for the interval between action and sensation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433714 | PMC |
http://dx.doi.org/10.3389/fpsyg.2019.00511 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!