The United Nations General Assembly has called for greater protection of the world's deep-sea species and of features such as Vulnerable Marine Ecosystems (VMEs). Sponges are important components of VMEs and information about their spatially explicit genetic diversity can inform management decisions concerning the placement of protected areas. We employed a spatially explicit hierarchical testing framework to examine genetic variation amongst archived samples of four deep-sea sponges in the New Zealand region. For Poecillastra laminaris Sollas 1886, significant mitochondrial (COI, Cytb) and nuclear DNA (microsatellite) genetic differences were observed between provinces, amongst north-central-south regions and amongst geomorphic features. For Penares sp. no significant structure was detected (COI, 12S) across the same areas. For both Neoaulaxinia persicum Kelly, 2007 (COI, 12S) and Pleroma menoui Lévi & Lévi 1983 (COI) there was no evidence of genetic differentiation within their northern only regional distributions. Of 10 separate species-by-marker tests for isolation-by-distance and isolation-by-depth, only the isolation-by-depth test for N. persicum for COI was significant. The use of archived samples highlights how historical material may be used to support national and international management decisions. The results are discussed in the broader context of existing marine protected areas, and possible future design of spatial management measures for protecting VMEs in the New Zealand region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445101 | PMC |
http://dx.doi.org/10.1038/s41598-019-41877-9 | DOI Listing |
Nat Commun
January 2025
Center for Mind/Brain Science, University of Trento, Rovereto, (TN), Italy.
Number and space are inherently related. Previous research has provided evidence that numbers are aligned to a so-called "mental number line", which is malleable and affected by cultural factors mostly linked to literacy-related habits. However, preverbal humans and non-human animals also map numerosities into space, in a consistent left-to-right direction.
View Article and Find Full Text PDFChaos
January 2025
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China.
We demonstrate that fundamental nonlinear localized modes can exist in the Chen-Lee-Liu equation modified by several parity-time (PT) symmetric complex potentials. The explicit formula of analytical solitons is derived from the physically interesting Scarf-II potential, and families of spatial solitons in internal modes are numerically captured under the optical lattice potential. By the spectral analysis of linear stability, we observe that these bright solitons can remain stable across a broad scope of potential parameters, despite the breaking of the corresponding linear PT-symmetric phases.
View Article and Find Full Text PDFISME J
January 2025
Biology Department, University of Massachusetts Boston, Boston, MA 02125.
Multi-species mutualistic interactions are ubiquitous and essential in nature, yet they face several threats, many of which have been exacerbated in the Anthropocene era. Understanding the factors that drive the stability and persistence of mutualism has become increasingly important in light of global change. Although dispersal is widely recognized as a crucial spatially explicit process in maintaining biodiversity and community structure, knowledge about how the dispersal of mutualists contributes to the persistence of mutualistic systems remains limited.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
The influence of landscape structure on epidemic invasion of agricultural crops is often underestimated in the construction and analysis of epidemiological models. Computer simulations of individual-based models (IBMs) are widely used to characterize disease spread under different management scenarios but can be slow in exploring large numbers of different landscape configurations. Here, we address the problem of finding an analytical measure of the impact of the spatial structure of a crop landscape on the invasion and spread of plant pathogens.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2025
Department of Zoology, University of Cambridge, Cambridge, UK.
Human-driven habitat loss is recognized as the greatest cause of the biodiversity crisis, yet to date we lack robust, spatially explicit metrics quantifying the impacts of anthropogenic changes in habitat extent on species' extinctions. Existing metrics either fail to consider species identity or focus solely on recent habitat losses. The persistence score approach developed by Durán .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!