DNA damage response Ser/Thr kinases, including ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR), control cell cycle progression, DNA repair, and apoptosis. ATR is activated by ETAA1 activator of ATR kinase (ETAA1) or DNA topoisomerase II binding protein 1 (TOPBP1). Both ETAA1 and TOPBP1 contain experimentally defined ATR activation domains (AADs) that are mostly unstructured and have minimal sequence similarity. A tryptophan residue in both AADs is required for ATR activation, but the other features of these domains and the mechanism by which they activate ATR are unknown. In this study, using bioinformatic analyses, kinase assays, co-immunoprecipitation, and immunofluorescence measures of signaling, we more specifically defined the TOPBP1 and ETAA1 AADs and identified additional features of the AADs needed for ATR activation. We found that both ETAA1 and TOPBP1 contain a predicted coiled-coil motif that is required for ATR activation and in cells. Mutation of the predicted coiled coils does not alter AAD oligomerization but does impair binding of the AADs to ATR. These results suggest that TOPBP1 and ETAA1 activate ATR using similar motifs and mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544864 | PMC |
http://dx.doi.org/10.1074/jbc.RA119.008154 | DOI Listing |
J Biophotonics
January 2025
Faculty of Medicine, Department of Biophysics, Yuksek Ihtisas University, Ankara, Türkiye.
Zerumbone is a sesquiterpene phytochemical with cytotoxic activity against cancer. This study aimed to evaluate the effect of zerumbone on cell viability by WST-1 test, apoptosis by TUNEL, lipid peroxidation markers (malondialdehyde, MDA, and 4-hydroxynonenal, HNE) by using assay kits, and biomolecular changes by ATR-FTIR spectroscopy in A549 cells. After zerumbone (0-100 μM) incubation for 24, 48, and 72 h, the number of TUNEL-positive cells was found to be higher in zerumbone-treated cells than in controls, in consistent with cell morphology results.
View Article and Find Full Text PDFSmall
January 2025
Institute of Nano Science and Technology, Sector-81, Knowledge city, S.A.S. Nagar, Punjab, 140306, India.
Oxygen electrocatalysis plays a pivotal role in energy conversion and storage technologies. The precise identification of active sites for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for developing an efficient bifunctional electrocatalyst. However, this remains a challenging endeavor.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Faculty of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran.
In this research, tartaric acid was used to enhance the hydroxyapatite coating on AZ31 Mg alloy substrate through post-treatment and direct addition methods, and the corrosion resistance and biological activity of the samples were investigated. The parameters of concentration, immersion time, and pH of the coating solution were optimized by Electrochemical Impedance Spectroscopy (EIS) and Direct Current (DC) Polarization techniques. According to EIS results in the post-treatment method, tartaric acid with a concentration of 1 g/L, pH = 9 and immersion time of 2 min, increased the corrosion resistance of hydroxyapatite coating from 3630 to about 18,763 Ω.
View Article and Find Full Text PDFCureus
December 2024
Trauma and Orthopaedics, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, GBR.
Introduction Achilles tendon rupture (ATR) represents a significant musculoskeletal injury that can affect many patients' mobility and quality of life. Treatment of ATR consists of both conservative and surgical options, with the traditional belief being that surgical intervention reduces the risk of re-rupture. However, with the introduction of physiotherapy-led functional rehabilitation strategies with early mobilization, it has been shown that re-rupture rates are equal among surgical and non-surgical patients.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
Curcumae Longae Rhizoma (CLRh), Curcumae Radix (CRa), and Curcumae Rhizoma (CRh), derived from the different medicinal parts of the species, are blood-activating analgesics commonly used for promoting blood circulation and relieving pain. Due to their certain similarities in chemical composition and pharmacological effects, these three herbs exhibit a high risk associated with mixing and indiscriminate use. The diverse methods used for distinguishing the medicinal origins are complex, time-consuming, and limited to intraspecific differentiation, which are not suitable for rapid and systematic identification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!