Purpose: CD38 has emerged as a high-impact therapeutic target in multiple myeloma, with the approval of daratumumab (anti-CD38 mAb). The clinical importance of CD38 in patients with chronic lymphocytic leukemia (CLL) has been known for over 2 decades, although it's relevance as a therapeutic target in CLL remains understudied.

Experimental Design: We investigated the biological effects and antitumor mechanisms engaged by daratumumab in primary CLL cells. Besides its known immune-effector mechanisms (antibody-dependent cell-mediated cytotoxicity, complement-dependent death, and antibody-dependent cellular phagocytosis), we also measured direct apoptotic effects of daratumumab alone or in combination with ibrutinib. antileukemic activity was assessed in a partially humanized xenograft model. The influence of CD38 on B-cell receptor (BCR) signaling was measured via immunoblotting of Lyn, Syk, BTK, PLCγ2, ERK1/2, and AKT.

Results: In addition to immune-effector mechanisms; daratumumab also induced direct apoptosis of primary CLL cells, which was partially dependent on FcγR cross-linking. For the first time, we demonstrated the influence of CD38 on BCR signaling where interference of CD38 downregulated Syk, BTK, PLCγ2, ERK1/2, and AKT; effects that were further enhanced by addition of ibrutinib. In comparison to single-agent treatment, the combination of ibrutinib and daratumumab resulted in significantly enhanced anti-CLL activity and significantly decreased tumor growth and prolonged survival in the CLL xenograft model.

Conclusions: Overall, our data demonstrate the antitumor mechanisms of daratumumab in CLL; furthermore, we show how cotargeting BTK and CD38 lead to a robust anti-CLL effect, which has clinical implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744942PMC
http://dx.doi.org/10.1158/1078-0432.CCR-18-3412DOI Listing

Publication Analysis

Top Keywords

antileukemic activity
8
chronic lymphocytic
8
lymphocytic leukemia
8
therapeutic target
8
antitumor mechanisms
8
primary cll
8
cll cells
8
immune-effector mechanisms
8
combination ibrutinib
8
influence cd38
8

Similar Publications

Novel antileukemic compound with sub-micromolar potency against STAT5 addicted myeloid leukemia cells.

Eur J Med Chem

December 2024

INSERM UMR 1100 CEPR, Research Center for Respiratory Diseases, Team 2 "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", 10 Boulevard Tonnellé, 37032, Tours, France. Electronic address:

Signal Transdcer and Activator of Transcription 5A and 5B (STAT5A/5B) are key effectors of tyrosine kinase oncogenes in myeloid leukemias. It is now clearly evidenced that inhibition of STAT5A/5B not only blocks the growth and survival of myeloid leukemia cells but also overcomes the resistance of leukemic cells to chemotherapy. Previous screening experiments allowed us to identify 17f as a lead compound with promising antileukemic activity that blocks the phosphorylation and transcriptional activity of STAT5A/5B in myeloid leukemia cells addicted to these proteins.

View Article and Find Full Text PDF

Cytoplasmic proliferating cell nuclear antigen (PCNA) is highly expressed in acute myeloid leukemia (AML) cells, supporting oxidative metabolism and leukemia stem cell (LSC) growth. We report on AOH1996 (AOH), an oral compound targeting cancer-associated PCNA, which shows significant antileukemic activity. AOH inhibited growth in AML cell lines and primary CD34 + CD38 - blasts (LSC-enriched) in vitro while sparing normal hematopoietic stem cells (HSCs).

View Article and Find Full Text PDF

CD4 T Cells Mediate Dendritic Cell Licensing to Promote Multi-Antigen Anti-Leukemic Immune Response.

Cancer Med

January 2025

Division of Oncology, The Children's Hospitial of Philadelphia, Philadelphia, Pennsylvania, USA.

Background: Single antigen (Ag)-targeted immunotherapies for acute lymphoblastic leukemia (ALL) are highly effective; however, up to 50% of patients relapse after these treatments. Most of these relapses lack target Ag expression, suggesting targeting multiple Ags would be advantageous.

Materials & Methods: The multi-Ag immune responses to ALL induced by transducing cell lines with xenoAgs green fluorescent protein and firefly luciferase was elucidated using flow cytometry, ELISA, and ELISpot assays.

View Article and Find Full Text PDF

3D chromatin hubs as regulatory units of identity and survival in human acute leukemia.

Mol Cell

January 2025

Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA. Electronic address:

Cancer progression involves genetic and epigenetic changes that disrupt chromatin 3D organization, affecting enhancer-promoter interactions and promoting growth. Here, we provide an integrative approach, combining chromatin conformation, accessibility, and transcription analysis, validated by in silico and CRISPR-interference screens, to identify relevant 3D topologies in pediatric T cell leukemia (T-ALL and ETP-ALL). We characterize 3D hubs as regulatory centers for oncogenes and disease markers, linking them to biological processes like cell division, inflammation, and stress response.

View Article and Find Full Text PDF

Adoptive cell therapy (ACT) can address an unmet clinical need for patients with relapsed/refractory acute myeloid leukemia (AML), but its effect is often modest in the setting of high tumor burden. In this study, we postulated that strategies to lower the AML apoptotic threshold will augment T cell killing of AML cells. BH3 mimetics, such as venetoclax, are a clinically approved class of compounds that predispose cells to intrinsic apoptosis by inhibiting anti-apoptotic mitochondrial proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!