A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microfluidic bioprinting for organ-on-a-chip models. | LitMetric

Microfluidic bioprinting for organ-on-a-chip models.

Drug Discov Today

Bio-Manufacturing Programme, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A⁎STAR), 2 Fusionopolis Way, #08-04, Innovis, 138634, Singapore. Electronic address:

Published: June 2019

Bioprinting is a revolutionary technology to assemble scaffolds for growing tissues. Microfluidic organs-on-a-chip is a useful platform with widespread applications mainly in drug screening and pathological studies. Organ-on-a-chip models are created to recapitulate the structural, microenvironmental and physiological functions of human organs. Recently, bioprinting has been applied to fabricate organ-on-a-chip models owing to its ability to print multiple materials and cell types simultaneously with good spatial resolution and reproducibility. This enables the creation of a biomimetic microenvironment with heterogeneous 3D structures. Functional vascularized tissue structure can be printed directly enabling fluid flow for transport of nutrition, gaseous exchange and removal of waste. We examine the integration of microfluidic and bioprinting technologies for organ-on-a-chip applications and discuss the future trends and challenges.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drudis.2019.03.025DOI Listing

Publication Analysis

Top Keywords

organ-on-a-chip models
12
microfluidic bioprinting
8
organ-on-a-chip
4
bioprinting organ-on-a-chip
4
models bioprinting
4
bioprinting revolutionary
4
revolutionary technology
4
technology assemble
4
assemble scaffolds
4
scaffolds growing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!