Obesity and its comorbidities are increasing worldwide imposing a heavy socioeconomic burden. The effects of obesity on the metabolic profiles of tissues (liver, kidney, pancreas), urine, and the systemic circulation were investigated in the Zucker rat model using H NMR spectroscopy coupled to multivariate statistical analysis. The metabolic profiles of the obese ( fa/ fa) animals were clearly differentiated from the two phenotypically lean phenotypes, ((+/+) and ( fa/+)) within each biological compartment studied, and across all matrices combined. No significant differences were observed between the metabolic profiles of the genotypically distinct lean strains. Obese Zucker rats were characterized by higher relative concentrations of blood lipid species, cross-compartmental amino acids (particularly BCAAs), urinary and liver metabolites relating to the TCA cycle and glucose metabolism; and lower amounts of urinary gut microbial-host cometabolites, and intermatrix metabolites associated with creatine metabolism. Further to this, the obese Zucker rat metabotype was defined by significant metabolic alterations relating to disruptions in the metabolism of choline across all compartments analyzed. The cage environment was found to have a significant effect on urinary metabolites related to gut-microbial metabolism, with additional cage-microenvironment trends also observed in liver, kidney, and pancreas. This study emphasizes the value in metabotyping multiple biological matrices simultaneously to gain a better understanding of systemic perturbations in metabolism, and also underscores the need for control or evaluation of cage environment when designing and interpreting data from metabonomic studies in animal models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.9b00040 | DOI Listing |
J Plant Physiol
January 2025
Department of Botany, University of Delhi, New Delhi, 110007, Delhi, India. Electronic address:
As our planet faces increasing environmental challenges, such as biotic pressures, abiotic stressors, and climate change, it is crucial to understand the complex mechanisms that underlie stress responses in crop plants. Over past few years, the integration of techniques of proteomics, transcriptomics, and genomics like LC-MS, IT-MS, MALDI-MS, DIGE, ESTs, SAGE, WGS, GWAS, GBS, 2D-PAGE, CRISPR-Cas, cDNA-AFLP, HLS, HRPF, MPSS, CAGE, MAS, IEF, MudPIT, SRM/MRM, SWATH-MS, ESI have significantly enhanced our ability to comprehend the molecular pathways and regulatory networks, involved in balancing the ecosystem/ecology stress adaptation. This review offers thorough synopsis of the current research on utilizing these multi-omics methods (including metabolomics, ionomics) for battling abiotic (salinity, temperature (chilling/freezing/cold/heat), flood (hypoxia), drought, heavy metals/loids), biotic (pathogens like fungi, bacteria, virus, pests, and insects (aphids, caterpillars, moths, mites, nematodes) and climate change stress (ozone, ultraviolet radiation, green house gases, carbon dioxide).
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Obstetrics and Gynecology, Ankara University, Ankara 06100, Turkey.
This study aimed to investigate the effect of antihypertensive drugs on reproductive function in Rattus norvegicus and demonstrate the potential role of oxidative stress in reproductive dysfunction. Rattus norvegicus were selected as the experimental animals and divided into the following groups: healthy (control group), clonidine (CL), rilmenidine (RLD), methyldopa (MTL), amlodipine (ALD), and ramipril (RML). Each individual in each group was marked from one to six.
View Article and Find Full Text PDFTalanta
January 2025
College of Chemistry and Materials Science, Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang, 421001, China. Electronic address:
The accurate and sensitive quantification of hydroxyl radical (·OH) and glucose is necessary for disease diagnosis and health guidance, but still challenging owing to the low concentration of ·OH and poor water solubility of fluorescent probes. In addition, fluorescent probes may cause secondary pollution to the environment. Here an organic cage was reported as a sensitive fluorescent probe for ·OH and glucose in aqueous solution without serious secondary pollution.
View Article and Find Full Text PDFFront Aging Neurosci
December 2024
Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, United States.
Background: The 3xTg-AD transgenic mouse model of Alzheimer's disease (AD) is an important tool to investigate the relationship between development of pathological amyloid-β (Aβ) and tau, neuroinflammation, and cognitive impairments. Traditional behavioral tasks assessing aspects of learning and memory, such as mazes requiring spatial navigation, unfortunately suffer from several shortcomings, including the stress of human handling and not probing species-typical behavior. The automated IntelliCage system was developed to circumvent such issues by testing mice in a social environment while measuring multiple aspects of cognition.
View Article and Find Full Text PDFChemSusChem
January 2025
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China.
Lithium (Li) metal anodes (LMAs), which show a great potential in constructing high-specific-energy-density Li metal batteries (LMBs), have abstracted wide research interest. However, the generation of Li dendrites and the repeated change of volume upon Li plating/stripping severely block the practical commercialization of LMBs. Herein, the functional carbon fibers (CFs) decorated with ZnO embedded carbon cage (ZnO@C-d-CFs) were fabricated successfully by a two-step route including the in-situ growth of Zn-based metal organic frameworks (MOFs) and subsequent carbonization process, which enriched the lithiophilic sites of CFs host and improved Li kinetics of Li plating/stripping.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!