In this study different methods were used to evaluate the effectiveness of a carrageenan coating and carrageenan coating incorporating lemon essential oil (ELO) in preserving the physicochemical and olfactory characteristics of trout fillets stored at 4 °C up to 12 days. The fillet morphological structure was analyzed by histological and immunological methods; lipid peroxidation was performed with the peroxide and thiobarbituric acid reactive substances (TBARS) tests. At the same time, two less time-consuming methods, such as Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) spectroscopy and the electronic nose, were used. Uncoated trout fillets (UTF) showed a less compact tissue structure than carrageenan-coated threads (CTF) and coated fillets of carrageenan (active) ELO (ACTF), probably due to the degradation of collagen, as indicated by optical microscopy and ATR-FTIR. UTF showed greater lipid oxidation compared to CTF and ACTF, as indicated by the peroxide and TBARS tests and ATR-FTIR spectroscopy. The carrageenan coating containing ELO preserved the olfactory characteristics of the trout fillets better than the carrageenan coating alone, as indicated by the electronic nose analysis. This study confirms that both carrageenan and ELO containing carrageenan coatings slow down the decay of the physicochemical and olfactory characteristics of fresh trout fillets stored at 4 °C, although the latter is more effective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518181PMC
http://dx.doi.org/10.3390/foods8040113DOI Listing

Publication Analysis

Top Keywords

carrageenan coating
16
trout fillets
16
olfactory characteristics
12
physicochemical olfactory
8
characteristics trout
8
fillets stored
8
stored °c
8
tbars tests
8
atr-ftir spectroscopy
8
electronic nose
8

Similar Publications

Metal-organic frameworks (MOFs) have shown great promise as pH-responsive drug delivery systems, with considerable potential for targeted cancer therapy. In this study, we synthesized a novel curcumin-loaded MOF, named UWO-2 (CUR@UWO-2), and developed its biocomposite form, CS-κ-Cr/CUR@UWO-2, by coating it with chitosan (CS) and κ-carrageenan (κ-Cr). Structural analysis through powder X-ray diffraction (PXRD) confirmed the successful synthesis of UWO-2 and the incorporation of CUR within the MOF structure.

View Article and Find Full Text PDF

The discharge of oil-laden wastewater from industrial processes and the frequent occurrence of oil spills pose severe threats to the ecological environment and human health. Membrane materials with special wettability have garnered attention for their ability to achieve efficient oil-water separation by leveraging the differences in wettability at the oil-water interface. These materials are characterized by their simplicity, energy efficiency, environmental friendliness, and reusability.

View Article and Find Full Text PDF

The preservation of fish and seafood represents a significant challenge for the food industry due to these products' high susceptibility to microbial spoilage. Essential oils (EOs), classified as Generally Recognized as Safe (GRAS), have become a natural alternative to synthetic preservatives due to their antimicrobial and antioxidant properties. This review aims to analyze the specific potential of EOs in extending the shelf life of fish and seafood products, offering a natural and effective preservation solution.

View Article and Find Full Text PDF

Starch-nanoencapsulated polyphenol-induced polysaccharide gel coatings with efficient preservation capability.

Food Chem

March 2025

School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China. Electronic address:

Here, a facile self-assembly strategy was used to fabricate octenyl succinic anhydride starch (OSAS) nano micelles for encapsulation of K-carrageenan comprising curcumin (Cur) (KC/Cur-OSAS). KC/Cur-OSAS was used as a multipurpose edible food packaging coating on grapes. The characteristics, storage stability, photoactivated antibacterial properties and antimicrobial mechanisms of KC/Cur-OSAS were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!