Estimating food production under future air pollution and climate conditions in scenario analysis depends on accurately modelling ozone (O₃) effects on yield. This study tests several assumptions that form part of published approaches for modelling O₃ effects on photosynthesis and leaf duration against experimental data. In 2015 and 2016, two wheat cultivars were exposed in eight hemispherical glasshouses to O₃ ranging from 22 to 57 ppb (24 h mean), with profiles ranging from raised background to high peak treatments. The stomatal O₃ flux (Phytotoxic Ozone Dose, POD) to leaves was simulated using a multiplicative stomatal conductance model. Leaf senescence occurred earlier as average POD increased according to a linear relationship, and the two cultivars showed very different senescence responses. Negative effects of O₃ on photosynthesis were only observed alongside O₃-induced leaf senescence, suggesting that O₃ does not impair photosynthesis in un-senesced flag leaves at the realistic O₃ concentrations applied here. Accelerated senescence is therefore likely to be the dominant O₃ effect influencing yield in most agricultural environments. POD was better than 24 h mean concentration and AOT40 (accumulated O₃ exceeding 40 ppb, daylight hours) at predicting physiological response to O₃, and flux also accounted for the difference in exposure resulting from peak and high background treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6524376PMC
http://dx.doi.org/10.3390/plants8040084DOI Listing

Publication Analysis

Top Keywords

o₃
10
o₃ effects
8
o₃ flux
8
leaf senescence
8
insights leaf
4
leaf physiological
4
physiological responses
4
responses ozone
4
ozone crop
4
crop modelling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!