A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomimetic systems trigger a benzothiazole based molecular switch to 'turn on' fluorescence. | LitMetric

Biomimetic systems trigger a benzothiazole based molecular switch to 'turn on' fluorescence.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India. Electronic address:

Published: June 2019

Molecular switches are valuable tools for the detection of many chemical and biological processes. On the other hand, Schiff bases are known for their simplicity in synthesis and their enormous biochemical applications. In this scenario, when a strategically designed Schiff base acts as a molecular switch in biomimetic environments drags inevitable attention. In this article, we hereby demonstrate an interesting behavior of a strategically designed bioactive benzothiazole based Schiff base (E)-2-(((6-chlorobenzo[d]thiazol-2-ylimino)methyl)-5-diethylamino) phenol (CBMDP) whose fluorescence characteristics dramatically modulate as consequence of its structural modification in aqueous and biomimetic environments individually. Electronic absorption, steady state and time resolved fluorescence spectroscopic techniques along with DFT based quantum chemical calculation evidence that in pure organic solvents CBMDP exists in highly fluorescent enol-imine (N) form which transform into feebly fluorescent hydrated species (H) in bulk aqueous media. Contrariwise, on interaction with the ionic and non-ionic micellar media or with liposome, a structural restoration occurs from less fluorescent hydrated (H) species into a highly fluorescent normal (N) one. This molecular flipping of the title compound upon micellar compartmentalization is possibly caused by the micropolarity of the local environment and further supported by its spectral behavior in different polarity gradient solvent mixture of water-dioxane (protic-aprotic) and water-methanol (protic -protic). Usually, Schiff bases are prone to hydrolysis in aqueous media, interestingly, the structural framework of this strategically designed molecule only allow the first step of hydrolysis, which is hydration of azomethine linkage whereas it withstand the second step, and that possibly helps the structural restoration process. Hence the article described herein may emphasize how a systematically designed Schiff base framework can be used as 'turn off- turn on' fluorescent molecular switch which may be extremely useful for its applications in the area of biochemical sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2019.03.089DOI Listing

Publication Analysis

Top Keywords

molecular switch
12
strategically designed
12
schiff base
12
benzothiazole based
8
schiff bases
8
designed schiff
8
biomimetic environments
8
highly fluorescent
8
fluorescent hydrated
8
hydrated species
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!