Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Molecular switches are valuable tools for the detection of many chemical and biological processes. On the other hand, Schiff bases are known for their simplicity in synthesis and their enormous biochemical applications. In this scenario, when a strategically designed Schiff base acts as a molecular switch in biomimetic environments drags inevitable attention. In this article, we hereby demonstrate an interesting behavior of a strategically designed bioactive benzothiazole based Schiff base (E)-2-(((6-chlorobenzo[d]thiazol-2-ylimino)methyl)-5-diethylamino) phenol (CBMDP) whose fluorescence characteristics dramatically modulate as consequence of its structural modification in aqueous and biomimetic environments individually. Electronic absorption, steady state and time resolved fluorescence spectroscopic techniques along with DFT based quantum chemical calculation evidence that in pure organic solvents CBMDP exists in highly fluorescent enol-imine (N) form which transform into feebly fluorescent hydrated species (H) in bulk aqueous media. Contrariwise, on interaction with the ionic and non-ionic micellar media or with liposome, a structural restoration occurs from less fluorescent hydrated (H) species into a highly fluorescent normal (N) one. This molecular flipping of the title compound upon micellar compartmentalization is possibly caused by the micropolarity of the local environment and further supported by its spectral behavior in different polarity gradient solvent mixture of water-dioxane (protic-aprotic) and water-methanol (protic -protic). Usually, Schiff bases are prone to hydrolysis in aqueous media, interestingly, the structural framework of this strategically designed molecule only allow the first step of hydrolysis, which is hydration of azomethine linkage whereas it withstand the second step, and that possibly helps the structural restoration process. Hence the article described herein may emphasize how a systematically designed Schiff base framework can be used as 'turn off- turn on' fluorescent molecular switch which may be extremely useful for its applications in the area of biochemical sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2019.03.089 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!