In the present work we investigate the structure sensitivity of the oxygen evolution reaction (OER) combining electrochemistry, in situ spectroscopy and density functional theory calculations. The intrinsic difficulty of such studies is the fact that at electrode potentials where the OER is observed, the electrode material is highly oxidized. As a consequence, the surface structure during the reaction is in general ill-defined and only scarce knowledge exists concerning the structure-activity relationship of this important reaction. To alleviate these challenging conditions, we chose as starting point well-defined Pt single-crystal electrodes, which we exposed to well-defined conditioning before studying their OER rate. Using this approach, a potential region is identified where the OER on Pt is indeed structure-sensitive with Pt(100) being significantly more active than Pt(111). This experimental finding is in contrast to a DFT analysis of the adsorption strength of the reaction intermediates O*, OH*, and OOH* often used to plot the activity in a volcano curve. It is proposed that as a consequence of the highly oxidizing conditions, the structure-sensitive charge-transfer resistance through the interface determines the observed reaction rate.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201900193DOI Listing

Publication Analysis

Top Keywords

structure sensitivity
8
sensitivity oxygen
8
oxygen evolution
8
evolution reaction
8
single-crystal electrodes
8
reaction
6
examining structure
4
reaction single-crystal
4
electrodes combined
4
combined experimental
4

Similar Publications

The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.

View Article and Find Full Text PDF

Understanding structure-mechanical activity relationships (SMARs) in polymer mechanochemistry is essential for the rational design of mechanophores with desired properties, yet SMARs in noncovalent mechanical transformations remain relatively underexplored. In this study, we designed a subset of diarylethene mechanophores based on a lever-arm hypothesis and systematically investigated their mechanical activity toward a noncovalent-yet-chemical conversion of atropisomer stereochemistry. Results from Density functional theory (DFT) calculations, single-molecule force spectroscopy (SMFS) measurements, and ultrasonication experiments collectively support the lever-arm hypothesis and confirm the exceptional sensitivity of chemo-mechanical coupling in these atropisomers.

View Article and Find Full Text PDF

The Helicobacter pylori flagellar motor contains several accessory structures that are not found in the archetypal Escherichia coli and Salmonella enterica motors. H. pylori hp0838 encodes a previously uncharacterized lipoprotein and is in an operon with flgP, which encodes a motor accessory protein.

View Article and Find Full Text PDF

Noncanonical sentence structures pose comprehension challenges because they require increased cognitive demand. Prosody may partially alleviate this cognitive load. These findings largely stem from behavioral studies, yet physiological measures may reveal additional insights into how cognition is deployed to parse sentences.

View Article and Find Full Text PDF

Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!